题目内容
【题目】如图所示,光滑水平面上放着长为L=25m,质量为M=5kg的木板(厚度不计),一个质量为m=1kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,开始均静止。今对木板施加一水平向右的恒定拉力F=21N,作用2s后,撤去拉力F,求:
(1)还没撤拉力F的过程小物块和木板的加速度各为多大
(2)整个过程木板和小物体因摩擦而产生的热量
【答案】(1)a1=1 m/s2 ,a2=4m/s2;(2)21J。
【解析】
(1)由题意知木块向右作匀加速运动,根据牛顿第二定律,对木块有:
则木块的加速度大小为:
;
对木板有:
则木板的加速度大小为:
;
(2)相对滑动的路程为
代入数据可得:
s1=6m
产生的热量
Q1=μmgs1
联立解得
Q1=6J
此时m的速度
υ1=a1t=2m/s,
υ2=a2t=4×2=8m/s
撤去拉力后,取向右为正方向,由动量守恒定律可知:
mυ1+Mυ2=(m+M)υ共
解得
υ共=7m/s
相对运动的时间
相对滑动的路程为
有:
所以m没有掉下去,能够和M共速度
由能量关系可知:
Q2=μmgs2
解得
Q2=15J
总热量为
Q总=Q1+Q2=21J
练习册系列答案
相关题目