ÌâÄ¿ÄÚÈÝ
15£®Ä³Í¬Ñ§ÓÃÈçͼËùʾµÄµç·×ö¡°²â¶¨µçÔ´µç¶¯ÊƺÍÄÚµç×衱µÄʵÑ飬Ëû½«ÊµÑéÖеÄ6×éµçѹU£¬µçÁ÷IµÄÊý¾Ý±êÔÚ×ø±êÖ½ÉÏ£®£¨1£©ÊÔ¸ù¾ÝÕâЩÊý¾ÝµãÔÚ×ø±êÖ½ÉÏ»³öU-IͼÏߣ»
£¨2£©¸ù¾ÝͼÏßÇó³öµç³ØµÄµç¶¯ÊÆE=1.50V£¬ÄÚ×èr=0.83¦¸£»
£¨3£©Óô˵ç·²â³öµÄµç¶¯ÊƱȵ綯ÊƵÄÕæʵֵƫС£»£¨Ìî¡°Æ«´ó¡±»ò¡°Æ«Ð¡¡±»ò¡°ÏàµÈ¡±£©£®
£¨4£©ÈôÔÚʵÑéÊÒÖÐûÓеçѹ±í£¬ÐèÓÃÁ¿³Ì1mA¡¢ÄÚ×èr1=200¦¸µÄµçÁ÷±íAºÍµç×èÏäR¸Ä×°³ÉÁ¿³ÌΪ2VµÄµçѹ±í£¬Ôòµç×èÏäRµÄÖµÓ¦µ÷Ϊ1800¦¸£®
·ÖÎö £¨1£©¸ù¾ÝÃèµã·¨¿ÉµÃ³ö¶ÔÓ¦µÄͼÏó£»
£¨2£©Óɱպϵç·ŷķ¶¨ÂɽøÐзÖÎö£¬½áºÏͼÏóµÄÐÔÖʼ´¿ÉÇóµÃµç¶¯ÊƺÍÄÚµç×裻
£¨3£©¸ù¾ÝʵÑéÔÀí·ÖÎöʵÑéÖеÄÎó²î£»
£¨4£©¸ù¾Ý´®²¢Áªµç·µÄ¹æÂɽøÐзÖÎö£¬´Ó¶øÇó³öÓ¦´®ÁªµÄµç×裮
½â´ð ½â£º£¨1£©¸ù¾ÝÃè³öµÄµãÀûÓÃÖ±Ïß½«¸÷µãÄâºÏ£¬ÈçͼËùʾ£»
£¨2£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉ¿ÉÖª£ºU=E-Ir£¬
ÔòÓÉͼ¿ÉÖª£¬µçÔ´µÄµç¶¯ÊÆΪ£ºE=1.50V£¬
ͼÏóµÄбÂʱíʾµçÔ´µÄÄÚ×裬¹ÊÓУºr=$\frac{1.5-1.0}{0.6}$=0.83¦¸£»
£¨3£©±¾½Ó·¨ÖвÉÓÃÏà¶ÔµçÔ´µÄµçÁ÷±íÍâ½Ó·¨£¬ÒòΪµçѹ±íµÄ·ÖÁ÷×÷Óã¬Ê¹µçÁ÷±í²âÁ¿½á¹ûƫС£¬Ôò¿ÉÖª£¬Êµ¼ÊͼÏó£¨ÐéÏßËùʾ£©ºÍ²âÁ¿Í¼ÏóÓ¦ÈçͼËùʾ£»ÓÉͼ¿ÉÖª£¬²âÁ¿½á¹ûƫС£»
£¨4£©¸ù¾Ý´®Áªµç·¹æÂÉ¿ÉÖª£¬´®Áªµç×è×èֵΪ£ºR=$\frac{U-{I}_{g}{R}_{g}}{{I}_{g}}$=$\frac{2-1¡Á1{0}^{-3}¡Á200}{1¡Á1{0}^{-3}}$=1800¦¸£®
¹Ê´ð°¸Îª£º£¨1£©ÈçͼËùʾ£»£¨2£©1.50£»0.83£»£¨3£©Æ«Ð¡£»£¨4£©1800£®
µãÆÀ ±¾Ì⿼²é²âÁ¿µç¶¯ÊƺÍÄÚµç×èµÄʵÑ飬ҪעÒâÃ÷ȷʵÑéÔÀí£¬ÖªµÀʵÑéÖеç±íÄÚ×èµÄÓ°Ï죬´Ó¶ø·ÖÎöʵÑéÖдæÔÚµÄÎó²îÇé¿ö£®
A£® | ${\;}_{54}^{140}Xe+{\;}_{38}^{94}Sr$ | B£® | ${\;}_{54}^{140}Xe+{\;}_{36}^{93}Kr$ | ||
C£® | ${\;}_{56}^{141}Ba+{\;}_{36}^{92}Kr$ | D£® | ${\;}_{56}^{141}Ba+{\;}_{38}^{93}Sr$ |
A£® | ͼÖÐa=84£¬b=206 | |
B£® | ${\;}_{82}^{206}$Pb±È${\;}_{92}^{238}$UµÄ±È½áºÏÄÜ´ó | |
C£® | YÊǦÂË¥±ä£¬·Å³öµç×Ó | |
D£® | ${\;}_{82}^{206}$PbµÄÖÐ×ÓÊý±È${\;}_{81}^{b}$TiµÄ¶à |
A£® | ¡°æ϶ð¶þºÅ¡±ÈÆÌ«ÑôÔ˶¯ÖÜÆں͵ØÇò×ÔתÖÜÆÚÏàµÈ | |
B£® | ¡°æ϶ð¶þºÅ¡±ÔÚL2µã´¦ÓÚƽºâ״̬ | |
C£® | ¡°æ϶ð¶þºÅ¡±ÈÆÌ«ÑôÔ˶¯µÄÏòÐļÓËٶȴóÓÚµØÇòÈÆÌ«ÑôÔ˶¯µÄÏòÐļÓËÙ¶È | |
D£® | ¡°æ϶ð¶þºÅ¡±ÔÚL2´¦ËùÊÜÌ«ÑôºÍµØÇòÒýÁ¦µÄºÏÁ¦±ÈÔÚL1´¦Ð¡ |
A£® | ÒÑ֪ˮµÄĦ¶ûÖÊÁ¿ºÍË®·Ö×ÓµÄÖÊÁ¿£¬¿ÉÒÔ¼ÆËã³ö°¢·ü¼ÓµÂÂÞ³£Êý | |
B£® | ²¼ÀÉÔ˶¯¾ÍÊÇ·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ | |
C£® | ¶ÔÀíÏëÆøÌå×ö¹¦£¬ÄÚÄܲ»Ò»¶¨Ôö¼Ó | |
D£® | ·Ö×Ó¼äµÄÏ໥×÷ÓÃÁ¦Ëæ×Å·Ö×Ó¼ä¾àÀëµÄÔö´ó£¬Ò»¶¨ÏȼõСºóÔö´ó | |
E£® | ÓûîÈûѹËõÆû¸×ÄÚµÄÀíÏëÆøÌ壬¶ÔÆøÌå×öÁË3.0¡Á105JµÄ¹¦£¬Í¬Ê±ÆøÌåÏòÍâ½ç·Å³ö1.5¡Á105JµÄÈÈÁ¿£¬ÔòÆøÌåÄÚÄÜÔö¼ÓÁË1.5¡Á105J |
A£® | BµãµÄ³¡Ç¿´óСΪE-k$\frac{Q}{{r}^{2}}$ | B£® | AµãµÄ³¡Ç¿´óСΪ$\sqrt{{E}^{2}+{K}^{2}\frac{{Q}^{2}}{{r}^{4}}}$ | ||
C£® | DµãµÄ³¡Ç¿´óС²»¿ÉÄÜΪ0 | D£® | A¡¢CÁ½µãµÄ³¡Ç¿Ïàͬ |