题目内容
(18分)如图所示,倾斜轨道AB的倾角为37o,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。小球由静止从A点释放,已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin37o=0.6,cos37o=0.8,圆弧管道BC入口B与出口C的高度差为1.8R。求:
⑴小球滑到斜面底端C时速度的大小。
(2)小球对刚到C时对轨道的作用力。
(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R’应该满足什么条件?若R’=2.5R,小球最后所停位置距D(或E)多远?
注:在运算中,根号中的数值无需算出。
(1) (2)6.6mg ,方向竖直向下 (3)要使小球在运动过程中不脱离轨道,情况一:小球b能滑过圆周轨道最高点,进入EF轨道.R′≤0.92R,小球b上滑至四分之一圆轨道的Q点时,速度减为零,然后滑回D;情况二:R′≥2.3R,b球将停在D点左侧,距D点0.6R处,a球停在D点左侧,距D点R处.
解析试题分析:(1)设小球到达C点时速度为v,a球从A运动至C过程,由动能定理有
(2分)
可得 (1分)
(2)小球沿BC轨道做圆周运动,设在C点时轨道对球的作用力为N,由牛顿第二定律
, (2分) 其中r满足 r+r·sin530=1.8R (1分)
联立上式可得:N=6.6mg (1分)
由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下。 (1分)
(3)要使小球不脱离轨道,有两种情况:
情况一:小球能滑过圆周轨道最高点,进入EF轨道。则小球b在最高点P应满足 (1分)
小球从C直到P点过程,由动能定理,有 (1分)
可得 (1分)
情况二:小球上滑至四分之一圆轨道的Q点时,速度减为零,然后滑回D。则由动能定理有
(1分)
(1分)
若,由上面分析可知,小球必定滑回D,设其能向左滑过DC轨道,并沿CB运动到达B点,在B点的速度为vB,,则由能量守恒定律有 (1分)
由⑤⑨式,可得 (1分)
故知,小球不能滑回倾斜轨道AB,小球将在两圆轨道之间做往返运动,小球将停在CD轨道上的某处。设小球在CD轨道上运动的总路程为S,则由能量守恒定律,有 (1分)
由⑤⑩两式,可得 S=5.6R (1分)
所以知,b球将停在D点左侧,距D点0.6R处。 (1分)
考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力。
探究能力是进行物理学研究的重要能力之一.物体因绕轴转动而具有的动能叫转动动能,转动动能的大小与物体转动的角速度有关.为了研究某一砂轮的转动动能Ek与角速度ω的关系,某同学采用了下述实验方法进行探索.如图所示,先让砂轮由动力带动匀速旋转,测得其角速度ω,然后让砂轮脱离动力,由于克服转轴间摩擦力做功,砂轮最后停下,测出砂轮脱离动力到停止转动的圈数n,通过分析实验数据得出结论.另外已测试砂轮转轴的直径为2 cm,转轴间的摩擦力为10 N/π.经实验测得的几组ω和n如下表所示:
ω/rad·s-1 | 0.5 | 1 | 2 | 3 | 4 |
n | 5.0 | 20 | 80 | 180 | 320 |
Ek | | | | | |
(1)计算出砂轮每次脱离动力的转动动能,并填入上表中.
(2)由上述数据推导出该砂轮的转动动能Ek与角速度ω的关系式为 .
(3)若测得脱离动力后砂轮的角速度为2.5 rad/s,则它转过45圈时的角速度为 rad/s 。