题目内容
如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd的质量为m、电阻为R、ad边长度为L,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B,ab边长度与有界磁场区域宽度相等,在t=0时刻线圈以初速度v0进入磁场,在t=T时刻线圈刚好全部进入磁场且速度为vl,此时对线圈施加一沿运动方向的变力F,使线圈在t=2T时刻线圈全部离开该磁场区,若上述过程中线圈的v―t图象如图乙所示,整个图象关于t=T轴对称.(1)求t=0时刻线圈的电功率;
(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F所做的功分别为多少?
(3)若线圈的面积为S,请运用牛顿第二运动定律和电磁学规律证明:在线圈进人磁场过程中
(1)t=0时,E=BLv0 线圈电功率P==(2)线圈进入磁场的过程中动能转化为焦耳热Q=mv02-mv12外力做功一是增加动能,二是克服安培力做功WF=mv02-mv12(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速vn-vn+1=∴v0-v1=(I1L1+I2L2++InLn)其中I1L1+I2L2++InLn=Q电量Q=It==∴v0-v1=
练习册系列答案
相关题目