ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬n¸öÏàͬµÄľ¿é£¨¿ÉÊÓΪÖʵ㣩£¬Ã¿¿éµÄÖÊÁ¿¶¼ÊÇm£¬´ÓÓÒÏò×óÑØͬһֱÏßÅÅÁÐÔÚˮƽ×ÀÃæÉÏ£¬ÏàÁÚľ¿é¼äµÄ¾àÀë¾ùΪl£¬µÚn¸öľ¿éµ½×À±ßµÄ¾àÀëÒ²ÊÇl£¬Ä¾¿éÓë×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì£®¿ªÊ¼Ê±£¬µÚ1¸öľ¿éÒÔ³õËٶȦÔ0Ïò×ó»¬ÐУ¬ÆäÓàËùÓÐľ¿é¶¼¾²Ö¹£¬ÔÚÿ´ÎÅöײºó£¬·¢ÉúÅöײµÄľ¿é¶¼Õ³ÔÚÒ»ÆðÔ˶¯£®×îºóµÚn¸öľ¿é¸ÕºÃ»¬µ½×À±ß¶øûÓеôÏ£®
£¨1£©ÇóÔÚÕû¸ö¹ý³ÌÖÐÒòÅöײ¶øËðʧµÄ×ܶ¯ÄÜ£®
£¨2£©ÇóµÚi´Î£¨i¡ÜnÒ»1£©ÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±È£®
£¨3£©Èôn=4£¬l=0.10m£¬¦Ô0=3.0m/s£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬Çó¦ÌµÄÊýÖµ£®
£¨1£©ÇóÔÚÕû¸ö¹ý³ÌÖÐÒòÅöײ¶øËðʧµÄ×ܶ¯ÄÜ£®
£¨2£©ÇóµÚi´Î£¨i¡ÜnÒ»1£©ÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±È£®
£¨3£©Èôn=4£¬l=0.10m£¬¦Ô0=3.0m/s£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬Çó¦ÌµÄÊýÖµ£®
·ÖÎö£º£¨1£©ÔÚÕû¸ö¹ý³ÌÖÐÒòÅöײºÍĦ²ÁËðʧµÄ×ܶ¯ÄܵÈÓÚ³õ¶¯ÄÜ¡÷Ek=
m
£¬Çó³ö¿Ë·þĦ²ÁÁ¦×ö¹¦£¬µÃµ½ÒòĦ²Á¶øËðʧµÄ¶¯ÄÜ£¬¾ÍÄÜÇóµÃÒòÅöײ¶øËðʧµÄ×ܶ¯ÄÜ£®
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öµÚi´Î£¨i¡ÜnÒ»1£©ÅöײǰºóËٶȹØϵ£¬¼´¿ÉÇóµÃÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±È£®
£¨3£©·Ö±ðÇóµÃ¸÷´ÎÅöײǰºóµÄ¶¯ÄÜ£¬µÃµ½µÚ3´ÎÅöײºóµÄ¶¯ÄÜ£¬½áºÏÌâÒ⣺µÚn=4¸öľ¿é¸ÕºÃ»¬µ½×À±ß¶øûÓеôÏ£¬ÔËÓù¦ÄܹØϵÇó¦Ì£®
1 |
2 |
v | 2 0 |
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öµÚi´Î£¨i¡ÜnÒ»1£©ÅöײǰºóËٶȹØϵ£¬¼´¿ÉÇóµÃÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±È£®
£¨3£©·Ö±ðÇóµÃ¸÷´ÎÅöײǰºóµÄ¶¯ÄÜ£¬µÃµ½µÚ3´ÎÅöײºóµÄ¶¯ÄÜ£¬½áºÏÌâÒ⣺µÚn=4¸öľ¿é¸ÕºÃ»¬µ½×À±ß¶øûÓеôÏ£¬ÔËÓù¦ÄܹØϵÇó¦Ì£®
½â´ð£º½â£º£¨1£©Õû¸ö¹ý³Ìľ¿é¿Ë·þĦ²ÁÁ¦×ö¹¦
W=¦Ìmgl+¦Ìmg?2l+¡+¦Ìmg?nl=
¢Ù
¸ù¾Ý¹¦ÄܹØϵ£¬Õû¸ö¹ý³ÌÖÐÓÉÓÚÅöײ¶øËðʧµÄ×ܶ¯ÄÜΪ
¡÷Ek=Ek0-W ¢Ú
µÃ¡÷Ek=
m
-
¢Û
£¨2£©ÉèµÚi´Î£¨i¡ÜnÒ»1£©Åöײǰľ¿éµÄËÙ¶ÈΪ¦Ôi£¬ÅöײºóËÙ¶ÈΪ¦Ôi¡ä£¬Ôò
£¨i+1£©m¦Ôi¡ä=im¦Ôi ¢Ü
ÅöײÖÐËðʧµÄ¶¯ÄÜ¡÷EʱÓëÅöײǰ¶¯ÄÜEkiÖ®±ÈΪ
=
£¨i¡Ün-1£©¢Ý
½âµÃ
=
£¨i¡Ün-1£©¢Þ
£¨3£©³õ¶¯ÄÜEk0=
m
µÚ1´ÎÅöײǰ
=EK0-¦Ìmgl ¢ß
µÚ1´ÎÅöײºó EK1¡ä=EK1-¡÷EK1=EK1-
EK1=
EK0-
¦Ìmgl ¢à
µÚ2´ÎÅöײǰ EK2=EK1¡ä=¦Ì£¨2mg£©l=
EK0-
¦Ìmgl
µÚ2´ÎÅöײºó EK2¡ä=EK2-¡÷EK2=
EK0-
¦Ìmgl
µÚ3´ÎÅöײǰ EK3=EK3¡ä-¦Ì£¨3mg£©l=
EK0-
¦Ìmgl
µÚ3´ÎÅöײºó EK3¡ä=EK3-¡÷EK3=
EK0-
¦Ìmgl
¾ÝÌâÒâÓÐ
EK0-
¦Ìmgl=¦Ì£¨4mg£©l ¢á
´úÈëÊý¾Ý£¬ÁªÁ¢Çó½âµÃ ¦Ì=0.15 ¢â
´ð£º
£¨1£©ÔÚÕû¸ö¹ý³ÌÖÐÒòÅöײ¶øËðʧµÄ×ܶ¯ÄÜΪ
m
-
£®
£¨2£©µÚi´Î£¨i¡ÜnÒ»1£©ÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±ÈΪ1£º£¨i+1£©£®
£¨3£©Èôn=4£¬l=0.10m£¬¦Ô0=3.0m/s£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬¦ÌµÄÊýÖµÊÇ0.15£®
W=¦Ìmgl+¦Ìmg?2l+¡+¦Ìmg?nl=
n(n+1)¦Ìmgl |
2 |
¸ù¾Ý¹¦ÄܹØϵ£¬Õû¸ö¹ý³ÌÖÐÓÉÓÚÅöײ¶øËðʧµÄ×ܶ¯ÄÜΪ
¡÷Ek=Ek0-W ¢Ú
µÃ¡÷Ek=
1 |
2 |
v | 2 0 |
n(n+1)¦Ìmgl |
2 |
£¨2£©ÉèµÚi´Î£¨i¡ÜnÒ»1£©Åöײǰľ¿éµÄËÙ¶ÈΪ¦Ôi£¬ÅöײºóËÙ¶ÈΪ¦Ôi¡ä£¬Ôò
£¨i+1£©m¦Ôi¡ä=im¦Ôi ¢Ü
ÅöײÖÐËðʧµÄ¶¯ÄÜ¡÷EʱÓëÅöײǰ¶¯ÄÜEkiÖ®±ÈΪ
¡÷EKi |
EKi |
| ||||||||
|
½âµÃ
¡÷EKi |
EKi |
1 |
i+1 |
£¨3£©³õ¶¯ÄÜEk0=
1 |
2 |
v | 2 0 |
µÚ1´ÎÅöײǰ
E | K1 |
µÚ1´ÎÅöײºó EK1¡ä=EK1-¡÷EK1=EK1-
1 |
2 |
1 |
2 |
1 |
2 |
µÚ2´ÎÅöײǰ EK2=EK1¡ä=¦Ì£¨2mg£©l=
1 |
2 |
1 |
2 |
µÚ2´ÎÅöײºó EK2¡ä=EK2-¡÷EK2=
1 |
3 |
5 |
3 |
µÚ3´ÎÅöײǰ EK3=EK3¡ä-¦Ì£¨3mg£©l=
1 |
3 |
14 |
3 |
µÚ3´ÎÅöײºó EK3¡ä=EK3-¡÷EK3=
1 |
4 |
7 |
2 |
¾ÝÌâÒâÓÐ
1 |
4 |
7 |
2 |
´úÈëÊý¾Ý£¬ÁªÁ¢Çó½âµÃ ¦Ì=0.15 ¢â
´ð£º
£¨1£©ÔÚÕû¸ö¹ý³ÌÖÐÒòÅöײ¶øËðʧµÄ×ܶ¯ÄÜΪ
1 |
2 |
v | 2 0 |
n(n+1)¦Ìmgl |
2 |
£¨2£©µÚi´Î£¨i¡ÜnÒ»1£©ÅöײÖÐËðʧµÄ¶¯ÄÜÓëÅöײǰ¶¯ÄÜÖ®±ÈΪ1£º£¨i+1£©£®
£¨3£©Èôn=4£¬l=0.10m£¬¦Ô0=3.0m/s£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£¬¦ÌµÄÊýÖµÊÇ0.15£®
µãÆÀ£º±¾ÌâÊǶ¯Á¿ÊغãÓ빦ÄܹØϵ½áºÏµÄÀàÐÍ£¬²ÉÓùéÄÉ·¨Çó½âÈô¸É´ÎÅöײµÄ¹ý³Ì£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿