ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ôڹ⻬ˮƽÃæÉÏÓÐÒ»×ã¹»³¤µÄ¾øԵƽ°å£¬ÖÊÁ¿ÎªM£¬ÉϱíÃæ´Ö²Ú£¬ÏòÓÒÔ˶¯µÄËÙ¶ÈΪV0£¬Æ½ÃæÉÏ·½Óд¹Ö±Ö½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óСΪB£®ÏÖÔÚƽ°åÓÒ¶ËÎÞ³õËÙÊÍ·ÅÒ»ÖÊÁ¿ÎªmµÄС»¬¿é£¬Ð¡»¬¿éËù´øµçÁ¿Îª+q£®ÊÔÌÖÂÛÔÚÒÔºóµÄÔ˶¯¹ý³ÌÖУº
£¨1£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£®Çó¾øԵƽ°åµÄ×îÖÕËٶȺÍϵͳÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿£»
£¨2£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿éÓÖÓÚ¾øԵƽ°åÎÞѹÁ¦£¬Çó¾øԵƽ°åµÄ×îÖÕËٶȺÍϵͳÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿£®
£¨1£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£®Çó¾øԵƽ°åµÄ×îÖÕËٶȺÍϵͳÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿£»
£¨2£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿éÓÖÓÚ¾øԵƽ°åÎÞѹÁ¦£¬Çó¾øԵƽ°åµÄ×îÖÕËٶȺÍϵͳÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿£®
·ÖÎö£º1¡¢Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£¬¸ù¾Ýϵͳ¶¯Á¿ÊغãºÍÄÜÁ¿ÊغãÁгöµÈʽÇó½â
2¡¢Ð¡»¬¿éÓë¾øԵƽ°åÎÞѹÁ¦£¬¸ù¾ÝƽºâÌõ¼þÁгöµÈʽ£¬¸ù¾Ýϵͳ¶¯Á¿ÊغãºÍÄÜÁ¿ÊغãÁгöµÈʽÇó½â£®
2¡¢Ð¡»¬¿éÓë¾øԵƽ°åÎÞѹÁ¦£¬¸ù¾ÝƽºâÌõ¼þÁгöµÈʽ£¬¸ù¾Ýϵͳ¶¯Á¿ÊغãºÍÄÜÁ¿ÊغãÁгöµÈʽÇó½â£®
½â´ð£º½â£º£¨1£©Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£¬×îºóÓй²Í¬ËÙ¶Èv£¬¸ù¾Ýϵͳ¶¯Á¿ÊغãµÃ£º
MV0=£¨M+m£©v£¬
v=
¸ù¾ÝÄÜÁ¿ÊغãµÃϵͳµÄ»úеÄÜת»¯ÎªÄÚÄÜ£¬¼´£º
Q=
-
=
£¨2£©Ð¡»¬¿éÓë¾øԵƽ°åÎÞѹÁ¦£¬ÉèС»¬¿éËÙ¶ÈΪv1£¬Æ½°åµÄËÙ¶ÈΪv2£¬¸ù¾ÝƽºâÌõ¼þµÃ£º
mg=qv1B
¸ù¾Ýϵͳ¶¯Á¿ÊغãµÃ£º
MV0=Mv2+mv1
v2=V0-
¸ù¾ÝÄÜÁ¿ÊغãµÃ£º
Q¡ä=
-
-
½âµÃ£ºQ¡ä=
£¨mv0-
-
£©
´ð£º£¨1£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£®¾øԵƽ°åµÄ×îÖÕËÙ¶ÈÊÇ
£¬ÏµÍ³ÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿ÊÇ
£»
£¨2£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿éÓÖÓÚ¾øԵƽ°åÎÞѹÁ¦£¬¾øԵƽ°åµÄ×îÖÕËÙ¶ÈÊÇV0-
£¬ÏµÍ³ÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿ÊÇ
£¨mv0-
-
£©£®
MV0=£¨M+m£©v£¬
v=
Mv0 |
M+m |
¸ù¾ÝÄÜÁ¿ÊغãµÃϵͳµÄ»úеÄÜת»¯ÎªÄÚÄÜ£¬¼´£º
Q=
1 |
2 |
Mv | 2 0 |
1 |
2 |
(M+m)v | 2 |
M
| ||
2(M+m) |
£¨2£©Ð¡»¬¿éÓë¾øԵƽ°åÎÞѹÁ¦£¬ÉèС»¬¿éËÙ¶ÈΪv1£¬Æ½°åµÄËÙ¶ÈΪv2£¬¸ù¾ÝƽºâÌõ¼þµÃ£º
mg=qv1B
¸ù¾Ýϵͳ¶¯Á¿ÊغãµÃ£º
MV0=Mv2+mv1
v2=V0-
m2g |
MBq |
¸ù¾ÝÄÜÁ¿ÊغãµÃ£º
Q¡ä=
1 |
2 |
Mv | 2 0 |
1 |
2 |
Mv | 2 2 |
1 |
2 |
mv | 2 1 |
½âµÃ£ºQ¡ä=
mg |
Bq |
m3g |
2MBq |
m2g |
2Bq |
´ð£º£¨1£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿é¶Ô¾øԵƽ°åÓÐѹÁ¦£®¾øԵƽ°åµÄ×îÖÕËÙ¶ÈÊÇ
Mv0 |
M+m |
M
| ||
2(M+m) |
£¨2£©Èç×îÖÕÎȶ¨ºó£¬Ð¡»¬¿éÓÖÓÚ¾øԵƽ°åÎÞѹÁ¦£¬¾øԵƽ°åµÄ×îÖÕËÙ¶ÈÊÇV0-
m2g |
MBq |
mg |
Bq |
m3g |
2MBq |
m2g |
2Bq |
µãÆÀ£º±¾ÌâÉæ¼°µÄ֪ʶÃæ±È½Ï¹ã£¬¿¼²éÁ˶¯Á¿Êغ㶨ÂÉ£¬ÄÜÁ¿Êغ㶨ÂÉ£¬¶ÔÊÜÁ¦·ÖÎö·ÖÎö¼°ÁÙ½ç״̬ÓнϸߵÄÒªÇó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿