题目内容

6.如图甲所示,两足够长的平行导轨间距为L=0.4m,导轨上端连接一阻值为R=0.2Ω的电阻,导轨平面与水平面的夹角为θ=37°,导轨所在空间以直线MN为边界分为上、下两个区域,下区域中存在垂直导轨平面向上的匀强磁场,匀强磁场的磁感应强度为B0=0.5T.质量为m=0.2kg、电阻为r=0.2Ω的导体棒跨在两导轨上并与导轨接触良好. t=0时刻开始,导体棒从磁场边界MN处在平行导轨向下的力F作用下由静止开始运动,力F随时间t变化的图象如图乙所示,t=2s以后磁感应强度大小开始变化(磁感应强度始终不为零),但导体棒始终做匀加速运动.若全过程中电阻R产生的热量为8.5J,取g=10m/s2,sin37°=0.6,cos37°=0.8.求:

(1)导体棒与导轨之间的动摩擦因数:
(2)0~2s内拉力F做的功;
(3)t=2s以后,磁感应强度随时间t变化的函数关系式.

分析 (1)当拉力分别为1.2N、2.8N时,根据牛顿第二定律列方程求解动摩擦因数;
(2)求出整个过程中克服安培力做的功,根据运动学公式求解2s末的速度和2s内的位移,根据动能定理求解拉力做的功;
(3)根据共点力的平衡条件列方程求解磁感应强度随时间t变化的函数关系式.

解答 解:(1)设加速度为a,动摩擦因数为μ,根据牛顿第二定律可得:
F1-μmgcosθ=ma,
当拉力为2.8N时,根据牛顿第二定律可得:F2-μmgcosθ-B0IL=ma,
其中I=$\frac{E}{R+r}=\frac{{B}_{0}Lv}{R+r}=\frac{{B}_{0}Lat}{R+r}$,其中t=2.0s,
联立解得:a=8m/s2,μ=0.25;
(2)0~2s内电阻R产生的热量为8.5J,则导体棒上产生的热量为8.5J,
整个过程中克服安培力做的功W=2Q=2×8.5J=17J;
2s末的速度v=at=16m/s,位移x=$\frac{v}{2}t=\frac{16}{2}×2m=16m$,
根据动能定理可得:WF-W-μmgxcosθ=$\frac{1}{2}m{v}^{2}$-0,
解得WF=49J;
(3)t=2s以后,磁感应强度的大小为B,根据共点力的平衡条件可得:
F1-μmgcosθ-BIL=0,即:F1-μmgcosθ-$\frac{{B}^{2}{L}^{2}at}{R+r}$=0,
解得:B=$\frac{1}{2\sqrt{t}}$ (T).
答:(1)导体棒与导轨之间的动摩擦因数为0.25:
(2)0~2s内拉力F做的功49J;
(3)t=2s以后,磁感应强度随时间t变化的函数关系式为B=$\frac{1}{2\sqrt{t}}$ (T).

点评 对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.

练习册系列答案
相关题目
10.某同学用单摆测定当地的重力加速度g.
(1)如图甲所示,用游标卡尺测摆球直径.摆球直径d=16.50mm.

(2)实验操作步骤如下:
A.取一根细线,下端系住一个金属小球,上端固定在铁架台上;
B.用米尺(最小刻度为1mm)测得摆线长l;
C.在摆线偏离竖直方向较小夹角的位置由静止释放小球;
D.用秒表记录小球完成n次全振动的总时间t,得到周期T=$\frac{t}{n}$,并记录数据;
E.改变摆线长,重复B、C、D的操作并记录数据.
该同学采用两种方法处理实验数据.第一种方法:根据每一组T和l,利用g=$\frac{4{π}^{2}l}{{T}^{2}}$求出多组g值,然后计算g值的平均值,求得当地的重力加速度g.第二种方法:根据每一组T和l,在图乙中描点,然后连线;根据图线的斜率,求出当地的重力加速度g.
实验中测量摆线长l和单摆周期T的偶然误差都比较小.
(3)在误差允许的范围内,第一种方法求出的重力加速度小于当地的重力加速度(选填“大于”、“等于”或“小于”),原因是摆长没有加摆球半径.
(4)该同学根据第二种方法在图乙描出了点,请你在图乙中描绘出T2-l图线.该同学从图乙中求出图线斜率k,则重力加速度g与斜率k的关系式为g=$\frac{4{π}^{2}}{k}$.在误差允许的范围内,该方法求得的重力加速度等于当地的重力加速度(选填“大于”、“等于”或“小于”).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网