ÌâÄ¿ÄÚÈÝ
13£®ÈçͼËùʾ£¬Ö±½Ç×ø±êƽÃæxOyÄÚÓÐÒ»ÌõÖ±ÏßAC¹ý×ø±êÔµãOÓëxÖá³É45¡ã¼Ð½Ç£¬ÔÚOAÓëxÖḺ°ëÖáÖ®¼äµÄÇøÓòÄÚ´æÔÚ´¹Ö±xOyƽÃæÏòÍâµÄÔÈÇ¿´Å³¡B£¬ÔÚOCÓëxÖáÕý°ëÖáÖ®¼äµÄÇøÓòÄÚ´æÔÚ´¹Ö±xOyƽÃæÏòÍâµÄÔÈÇ¿´Å³¡B2£®ÏÖÓÐÒ»ÖÊÁ¿Îªm£¬´øµçÁ¿Îªq£¨q£¾0£©µÄ´øµçÁ£×ÓÒÔËÙ¶Èv´ÓλÓÚÖ±ÏßACÉϵÄPµã£¬×ø±êΪ£¨L£¬L£©£¬ÊúÖ±ÏòÏÂÉä³ö£¬¾²âÁ¿·¢ÏÖ£¬´Ë´øµçÁ£×Óÿ¾¹ýÏàͬµÄʱ¼äT£¬»áÔÙ½«»Øµ½Pµã£¬ÒÑÖª¾à¸ÐӦǿ¶ÈB2=$\frac{mv}{qL}$£®£¨²»¼ÆÁ£×ÓÖØÁ¦£©£¨1£©ÇëÔÚͼÖл³ö´øµçÁ£×ÓµÄÔ˶¯¹ì¼££¬²¢Çó³öÔÈÇ¿´Å³¡B1ÓëB2µÄ±ÈÖµ£»£¨B1¡¢B2´Å³¡×ã¹»´ó£©
£¨2£©Çó³ö´øµçÁ£×ÓÏàÁÚÁ½´Î¾¹ýPµãµÄʱ¼ä¼ä¸ôT£»
£¨3£©Èô±£³Ö´Å¸ÐӦǿ¶ÈB2²»±ä£¬¸Ä±äB1µÄ´óС£¬µ«²»¸Ä±äÆä·½Ïò£¬Ê¹B1=$\frac{mv}{2qL}$£®ÏÖ´ÓPµãÏòÏÂÏȺó·¢ÉäËٶȷֱðΪ$\frac{v}{4}$ºÍ$\frac{v}{3}$µÄÓëÔÀ´ÏàͬµÄ´øµçÁ£×Ó£¨²»¼ÆÁ½¸ö´øµçÁ£×ÓÖ®¼äµÄÏ໥×÷ÓÃÁ¦£¬²¢ÇÒ´ËʱËã×÷µÚÒ»´Î¾¹ýÖ±ÏßAC£©£¬Èç¹ûËüÃǵÚÈý´Î¾¹ýÖ±ÏßACʱ¹ì¼£ÓëACµÄ½»µã·Ö±ð ¼ÇΪEµãºÍFµã£¨Í¼ÖÐδ»³ö£©£¬ÊÔÇóEFÁ½µã¼äµÄ¾àÀ룮
£¨4£©ÈôҪʹ£¨3£©ÖÐËù˵µÄÁ½¸ö´øµçÁ£×ÓͬʱµÚÈý´Î¾¹ýÖ±ÏßAC£¬ÎÊÁ½´øµçÁ£×ÓµÚÒ»´Î´ÓPµãÉä³öʱµÄʱ¼ä¼ä¸ô¡÷tÒª¶à³¤£¿
·ÖÎö £¨1£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â¹ìµÀ°ë¾¶£»Õæ¿ÕÖÐ×öÔÈËÙÖ±ÏßÔ˶¯£»»³ö¹ì¼££»
£¨2£©¸ù¾Ýt=$\frac{¦È}{2¦Ð}•T$ºÍT=$\frac{2¦Ðm}{qB}$Çó½â³öÔ²ÖÜÔ˶¯µÄʱ¼ä£¬ÔÙÇó½â³öÔÈËÙÖ±ÏßÔ˶¯µÄʱ¼äºóÏà¼Ó¼´¿É£»
£¨3£©Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â³ö°ë¾¶Ö®¼äµÄ¹Øϵ£¬È»ºó»³ö¶ÔÓ¦µÄ¹ì¼££¬µÃµ½EF¼ä¾à£»
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£®
½â´ð ½â£º£¨1£©´øµçÁ£×Ó´ÓPµãÔÈËÙÔ˶¯µ½Qµã£¬È»ºó×÷°ë¾¶Îª£º$qv{B_2}=m\frac{v^2}{R_2}⇒{R_2}=\frac{mv}{{q{B_2}}}=L$µÄÔÈËÙÔ²ÖÜÔ˶¯£¬Ô˶¯µ½HµãʱµÄËٶȷ½ÏòÓëAC´¹Ö±£¬´ÓHµãÔÈËÙÔ˶¯µ½Dµã£¬ºó×÷ÔÈËÙÔ²ÖÜÔ˶¯µ½Pµã£®
¸ù¾ÝƽÃ漸ºÎ֪ʶ¿ÉÖª£º$\overline{PO}=\overline{OD}=\sqrt{2}L$£¬ËıßÐÎAODOR1RΪÀâÐΣ¬OR1RΪԲÐÄ£¬¼´´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡BR1RÖÐ×÷ÔÈËÙÔ²ÖÜÔ˶¯Ê±µÄ°ë¾¶RR1RΪ$\sqrt{2}L$£¬¸ù¾Ý$qv{B_1}=m\frac{v^2}{R_1}$£¬
µÃ£º${B_1}=\frac{{\sqrt{2}mv}}{2qL}=\frac{{\sqrt{2}}}{2}{B_2}$£»
£¨2£©T=t1+t2+t3+t4
${t_1}=\frac{L}{v}$£¬
${t_2}=\frac{3}{8}{T_2}=\frac{3¦ÐL}{4v}$£¬
${t_3}=\frac{L}{v}$£¬
${t_4}=\frac{5}{8}{T_2}=\frac{{5\sqrt{2}¦ÐL}}{4v}$
½âµÃ£º$T={t_1}+{t_2}+{t_3}+{t_4}=\frac{{£¨8+3¦Ð+5\sqrt{2}¦Ð£©L}}{4v}$£»
£¨3£©Á½´øµçÁ£×ÓÔڴų¡BR2RÖÐÔ˶¯Ê±µÄ°ë¾¶Îª£º${R'_2}=\frac{{m\frac{v}{4}}}{{q{B_2}}}=\frac{L}{4}$£¬
${R''_2}=\frac{{m\frac{v}{3}}}{{q{B_2}}}=\frac{L}{3}$
${B_1}=\frac{mv}{2qL}=\frac{B_2}{2}$£¬
¹ÊÁ£×ÓÔڴų¡BR1RÖеÄÔ˶¯°ë¾¶£º
${R_1}=\frac{mv}{{q{B_1}}}=2{R_2}$£¬
ÔòÁ½´øµçÁ£×Ó¶¼¸ÕºÃÔ˶¯$\frac{1}{4}$Ô²Öܵ½´ïAµã£¬ËùÒÔEFÁ½µã¼äµÄ¾àÀëEF=0£¨ÈçͼËùʾ£©£»
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£º
$¡÷t=\frac{{L+\frac{L}{2}}}{{\frac{v}{4}}}-\frac{{L+\frac{L}{3}}}{{\frac{v}{3}}}=\frac{2L}{v}$£»
´ð£º£¨1£©´øµçÁ£×ÓµÄÔ˶¯¹ì¼£ÈçͼËùʾ£¬ÔÈÇ¿´Å³¡B1ÓëB2µÄ±ÈֵΪ$\frac{\sqrt{2}}{2}$£»
£¨2£©´øµçÁ£×ÓÏàÁÚÁ½´Î¾¹ýPµãµÄʱ¼ä¼ä¸ôTΪ$\frac{£¨8+3¦Ð+5\sqrt{2}¦Ð£©L}{4v}$£»
£¨3£©EFÁ½µã¼äµÄ¾àÀëΪ0£®
£¨4£©Á½´øµçÁ£×ÓµÚÒ»´Î´ÓPµãÉä³öʱµÄʱ¼ä¼ä¸ô¡÷tΪ$\frac{2L}{v}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÃ÷È·Á£×ÓµÄÔ˶¯ÐÔÖÊ£¬»³öÔ˶¯¹ì¼££¬È»ºó·ÖÔÈËÙÔ²ÖÜÔ˶¯ºÍÖ±ÏßÔ˶¯½×¶ÎÌÖÂÛ£®
A£® | º£µÁ¿ìͧÔÚ0¡«66sÄÚ´Ó¾²Ö¹³ö·¢×ö¼ÓËٶȼõСµÄ¼ÓËÙÖ±ÏßÔ˶¯ | |
B£® | º£µÁ¿ìͧÔÚ96sÄ©¿ªÊ¼µ÷Í·ÌÓÀë | |
C£® | º£µÁ¿ìͧÔÚ66sÄ©ÀëÉÌ´¬×î½ü | |
D£® | º£µÁ¿ìͧÔÚ96s¡«116sÄÚ×öÔȼõËÙÖ±ÏßÔ˶¯ |
A£® | ¸ÖË¿ÉþµÄ×î´óÀÁ¦Îª $\frac{P}{v_1}$ | |
B£® | Éý½µ»úµÄ×î´óËÙ¶Èv2=$\frac{P}{mg}$ | |
C£® | ¸ÖË¿ÉþµÄÀÁ¦¶ÔÉý½µ»úËù×öµÄ¹¦µÈÓÚÉý½µ»ú¿Ë·þÖØÁ¦Ëù×öµÄ¹¦ | |
D£® | Éý½µ»úËÙ¶ÈÓÉv1Ôö´óÖÁv2µÄ¹ý³ÌÖУ¬¸ÖË¿ÉþµÄÀÁ¦²»¶Ï¼õС |
¢ÙµçÈÝÆ÷µÄµçÈÝC±ä´ó
¢ÚµçÈÝÆ÷¼«°åµÄ´øµçÁ¿Q±äС
¢ÛµçÈÝÆ÷Á½¼«°å¼äµÄµçÊƲîU±ä´ó
¢ÜµçÈÝÆ÷Á½¼«°å¼äµÄµç³¡Ç¿¶ÈE±ä´ó
ÒÔÉÏÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | ¢Ù¢Ú | B£® | ¢Û¢Ü | C£® | ¢Ú¢Û | D£® | ¢Ù¢Ü |
£¨1£©ËûÏȺóÓöàÓõç±íÅ·Ä·µµµÄ¡°¡Á1k¡±¡¢¡°¡Á100¡±Á½¸öµµÎ»´Ö²âË®ÑùµÄµç×èֵʱ£¬±íÅÌÉÏÖ¸ÕëÈçͼÒÒÖÐËùʾ£¬ÔòËù²âË®ÑùµÄµç×èԼΪ1800¦¸£®
£¨2£©Ëû´ÓʵÑéÊÒÖÐÕÒµ½ÈçÏÂʵÑéÆ÷²Ä¸ü¾«È·µØ²âÁ¿ËùÈ¡Ë®ÑùµÄµç×裺
A£®µçÁ÷±í£¨Á¿³Ì5mA£¬µç×èRA=800¦¸£© B£®µçѹ±í£¨Á¿³Ì15V£¬µç×èRVԼΪ10.0k¦¸£©
C£®»¬¶¯±ä×èÆ÷£¨0¡«20¦¸£¬¶î¶¨µçÁ÷1A£© D£®µçÔ´£¨12V£¬ÄÚ×èÔ¼10¦¸£©
E£®¿ª¹ØÒ»Ö»¡¢µ¼ÏßÈô¸É
ÇëÓñÊÏß´úÌæµ¼Ïß°ïËûÔÚͼ±ûÖÐÍê³Éµç·Á¬½Ó£®
£¨3£©ÕýÈ·Á¬½Óµç·ºó£¬Õâλͬѧ±ÕºÏ¿ª¹Ø£¬²âµÃÒ»×éU¡¢IÊý¾Ý£»ÔÙµ÷½Ú»¬¶¯±ä×èÆ÷£¬Öظ´ÉÏÊö²âÁ¿µÃ³öһϵÁÐÊý¾ÝÈç±íËùʾ£¬ÇëÄãÔÚͼ¶¡µÄ×ø±êϵÖÐ×÷³öU-I¹ØϵͼÏߣ®
U/V | 2.0 | 3.8 | 6.8 | 8.0 | 10.2 | 11.6 |
I/mA | 0.73 | 1.36 | 2.20 | 2.89 | 3.66 | 4.15 |
A£® | L+$\frac{{m}_{1}£¨{m}_{1}+{m}_{2}£©F}{k}$ | B£® | L+$\frac{¦Ì{m}_{1}g}{k}$ | C£® | L+$\frac{{m}_{1}F}{k£¨{m}_{1}+{m}_{2}£©}$ | D£® | L+$\frac{¦Ì{m}_{2}g}{k}$ |