题目内容

【题目】水平转台上有质量相等的A、B两小物块,两小物块间用沿半径方向的细线相连,两物块始终相对转台静止,其位置如图所示(俯视图),两小物块与转台间的最大静摩擦力均为f0,则两小物块所受摩擦力FA、FB随转台角速度的平方(ω2)的变化关系正确的是( )

【答案】B

【解析】设A、B到圆心O的距离分别为r1、r2,若细线不存在,则由f0=mω2r及r1<r2可知A、B两物体相对转台滑动的临界角速度满足ωAB,即物体B所受摩擦力先达到最大值,随后在一段时间内保持不变,C、D错;当ω>ωB时,细线中出现拉力T,对物体A:T=0时,FA=mω2r1,T>0后,FA-T=mω2r1,而对物体B满足T+f0=mω2r2,联立得FA=mω2(r1+r2)-f0,所以T>0后直线斜率比T=0时大,当转台对A的摩擦力达到最大静摩擦力后,若转台角速度再增大,则A、B相对转台将出现滑动,所以A错、B对。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网