题目内容
如图所示,一个重为G的小球套在竖直放置的半径为R的光滑圆环上,一个劲度系数为k,自然长度为L(L<2R)的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.
φ = arcos?
解析:
小球受力如图所示,有竖直向下的重力G,弹簧的弹力F, 圆环的弹力N,N沿半径方向背离圆心O.
利用合成法,将重力G和弹力N合成,合力F合应与弹簧弹力F平衡观察发现,图中力的三角形△BCD与△AOB相似,设AB长度为l由三角形相似有:
= = ,即得F =
另外由胡克定律有F = k(l-L),而l = 2Rcosφ?
联立上述各式可得:cosφ = ,φ = arcos?
练习册系列答案
相关题目