题目内容

(19分)如图所示,质量M=4.0kg的滑板B静止于光滑的水平面上。滑板右端固定着一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,在L=0.5m这一段滑板上B与木块A之间的动摩擦因数μ=0.2,而弹簧的自由端C到弹簧固定端D所对应的滑板上表面光滑。可视为质点的木块A质量m=1.0kg,静止于滑板的左端。滑板B受水平向左的恒力F=14.0N,作用一定时间后撤去该力,此时木块A恰好运动到滑板C处(g取10.0m/s2)。试求:(1)恒力F的作用时间t;(2)弹簧贮存的最大弹性势能;(3)弹簧再次恢复原长时,A、B速度各多大?分析论证A能否从B上落下?

(19分)

解析  (1)开始时A、B均向左做匀加速直线运动,其加速度分别为

               aA=μg=2m/s2,

               aB=(F—μmg)/M=3 m/s2,                            (2分)

               由位移关系sB—sA=L可得

               ,                               (2分)

               代入数据求得         t=1s                              (1分)

       (2)1s末           m/s,

                                    m/s                               (2分)

   撤去外力F后弹簧被压缩,A继续加速,B开始减速,加速度均变大。当A、B速度相同时弹簧压缩量最大,具有最大弹性势能。根据系统动量守恒可得

                                            (2分)

                  弹簧贮存的最大弹性势能为

                         (2分)

                                                        (1分)

(3)从弹簧压缩最短开始,在弹力作用下A将向左做加速度减小的加速运动,B做加速度减小的减速运动,直到A与弹簧分离,设此时A、B速度分别为υA′、υB′。 

由动量守恒定律得

                          (2分)

由能量守恒定律得

                    (2分)

代入数据得

υA′=3.6m/s,υB′=2.6m/s。                                                           (1分)

弹簧再次恢复原长后,A将进入粗糙区做匀减速运动,B做匀加速运动

现假设A不会从B上掉下,最终A、B共速

根据系统动量守恒得:此时的共同速度与弹簧弹性势能最大时的共同速度相同。那么,从能量转化守恒知,弹簧的最大弹性势能将全部转化为此过程摩擦生热

代入数据得,因,故A不会从B上掉下来,最后A、B以相同速度向左做匀速运动。                                             (2分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网