题目内容
(19分)如图所示,在xoy平面内,以O'(0,R)为圆心、R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等。第四象限有一与x轴成45°角倾斜放置的挡板PQ,P、Q两点在坐标轴上,且OP两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m、电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进人x轴下方磁场,结果有一半粒子能打在挡板上。不计粒子重力、不考虑粒子间相互作用力。求:
(1)磁场的磁感应强度B的大小;
(2)挡板端点P的坐标;
(3)挡板上被粒子打中的区域长度。
(1);(2)(,0 );(3)。
【解析】
试题分析:(1)(8分)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,(3分)
由 (3分)
得:? (2分)
(2)(4分)有一半粒子打到挡板上需满足从O点射出的沿x轴负方向的粒子、沿y轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D做挡板的垂线交于E点,(1分)
?? ??? (2分)
P点的坐标为(,0 )?? (1分)
(3)(7分)设打到挡板最左侧的粒子打在挡板上的F点,如图丙所示,OF=2R??? ①??? (1分)
过O点做挡板的垂线交于G点,?
②?? (2分)
??? ③? (2分)
??????? ④??????????????? (1分)
挡板上被粒子打中的区域长度l=FE=+= ? ⑤ (1分)
(说明:如果用余弦定理求解,也给相应分,将②③ 的4分 分为公式和结果各给2分)
考点:洛伦兹力,圆周运动。
(19 分)如图所示,正方形单匝均匀线框abcd,边长L=0.4m,每边电阻相等,总电阻R=0.5Ω。 一根足够长的绝缘轻质细线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接绝缘物体P,物体P放在一个光滑的足够长的固定斜面上,斜面倾角θ=30°,斜面上方的细线与斜面平行。在正方形线框正下方有一有界的勻强磁场,上边界I和下边界II都水平, 两边界之间距离也是L=0.4m。磁场方向水平,垂直纸面向里,磁感应强度大小B=0.5T。 现让正方形线框的cd边距上边界I的正上方高度h=0.9m的位置由静止释放,且线框在运动过程中始终与磁场垂直,cd边始终保持水平,物体P始终在斜面上运动,线框刚好能 以v =3m/S的速度进入勻强磁场并匀速通过匀强磁场区域。释放前细线绷紧,重力加速度 g=10m/s2,不计空气阻力。
(1)线框的cd边在匀强磁场中运动的过程中,c、d间的电压是多大?
(2)线框的质量m1和物体P的质量m2分别是多大?
(3)在cd边刚进入磁场时,给线框施加一个竖直向下的拉力F使线框以进入磁场前的加速度匀加速通过磁场区域,在此过程中,力F做功W=0.23J,求正方形线框cd边产生的焦耳热是多少?