题目内容
如图所示,位于竖直平面上的
圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为
,最后落在地面上C点处,不计空气阻力.求:
(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大.
(2)小球落地点C与B点水平距离为多少.
1 |
4 |
2gR |
(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大.
(2)小球落地点C与B点水平距离为多少.
(1)小球到达B点时的加速度 a向=
=aB
则得:aB=
=
=2g
根据牛顿第二定律FN-mg=maB=mg
得:FN=3mg
根据牛顿第三定律得:小球运动到B点对轨道的压力为 FN′=FN=3mg;
(2)小球从B点抛出后做平抛运动,竖直方向自由落体,则有:
H-R=
gt2
水平方向匀速运动,有:
s=vBt
又 vB=
联立上三式得:s=2
;
答:
(1)小球刚运动到B点时的加速度为2g,对轨道的压力为3mg.
(2)小球落地点C与B点水平距离为2
.
| ||
R |
则得:aB=
| ||
R |
(
| ||
R |
根据牛顿第二定律FN-mg=maB=mg
得:FN=3mg
根据牛顿第三定律得:小球运动到B点对轨道的压力为 FN′=FN=3mg;
(2)小球从B点抛出后做平抛运动,竖直方向自由落体,则有:
H-R=
1 |
2 |
水平方向匀速运动,有:
s=vBt
又 vB=
2gR |
联立上三式得:s=2
R(H-R) |
答:
(1)小球刚运动到B点时的加速度为2g,对轨道的压力为3mg.
(2)小球落地点C与B点水平距离为2
R(H-R) |
练习册系列答案
相关题目