题目内容
如图所示,竖直平面内放一直角杆,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1kg的小球A和B,A、B间用细绳相连.初始A、B均处于静止状态,已知:OA=3m,OB=4m.若A球在水平拉力F的作用下向右缓慢地移动1m(取g=10m/s2),那么该过程中拉力F做功为( )
分析:对AB整体受力分析,受拉力F、重力G、支持力N、向左的摩擦力f和向右的弹力N1,根据共点力平衡条件列式,求出支持力N,从而得到滑动摩擦力为恒力;最后对整体运用动能定理列式,得到拉力的功.
解答:解:对AB整体受力分析,受拉力F、重力G、支持力N、向左的摩擦力f和向右的弹力N1,如图
根据共点力平衡条件,有
竖直方向:N=G1+G2
水平方向:F=f+N1
其中:f=μN
解得
N=(m1+m2)g=20N
f=μN=0.2×20N=4N
对整体在整个运动过程中运用动能定理列式,得到
WF-fs-m2g?h=0
根据几何关系,可知求B上升距离h=1m
故
WF=fs+m2g?h=4×1+1×10×1=14J
故选A.
根据共点力平衡条件,有
竖直方向:N=G1+G2
水平方向:F=f+N1
其中:f=μN
解得
N=(m1+m2)g=20N
f=μN=0.2×20N=4N
对整体在整个运动过程中运用动能定理列式,得到
WF-fs-m2g?h=0
根据几何关系,可知求B上升距离h=1m
故
WF=fs+m2g?h=4×1+1×10×1=14J
故选A.
点评:本题中拉力为变力,先对整体受力分析后根据共点力平衡条件得出摩擦力为恒力,然后根据动能定理求变力做功.
练习册系列答案
相关题目
如图所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L.劲度系数为k的轻弹簧上端固定在大环的中心O,下端连接一个质量为m、电荷量为q、可视为质点的小环,小环刚好套在大环上且与大环及弹簧绝缘,整个装置处在水平向右的匀强电场中.将小环从A点由静止释放,小环运动到B点时速度恰好为0.已知小环在A、B两点时弹簧的弹力大小相等,则( )
A、小环从A点运动到B点的过程中,弹簧的弹性势能先减小后增大 | ||
B、小环从A点运动到B点的过程中,小环的电势能一直增大 | ||
C、电场强度的大小E=
| ||
D、小环在A点时受到大环对它的弹力大小F=mg+
|