ÌâÄ¿ÄÚÈÝ
20£®ÈçͼËùʾΪij¸ÖÌú³§µÄ¸Ö¶§´«ËÍ×°Öã¬Ð±Æ³¤ÎªL=20m£¬¸ßΪh=2m£¬Ð±ÆÂÉϽôÅÅ×ÅÒ»ÅŹöͲ£®³¤Îªl=8m¡¢ÖÊÁ¿Îªm=1¡Á103kgµÄ¸Ö¶§ab·ÅÔÚ¹öͲÉÏ£¬¸Ö¶§Óë¹öͲ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.3£¬¹¤×÷ʱÓɵ綯»ú´ø¶¯ËùÓйöͲ˳ʱÕëÔÈËÙת¶¯£¬Ê¹¸Ö¶§ÑØбÆÂÏòÉÏÒƶ¯£¬¹öͲ±ßÔµµÄÏßËٶȾùΪv=4m/s£®¼ÙÉè¹Ø±Õµç¶¯»úµÄ˲ʱËùÓйöͲÁ¢¼´Í£Ö¹×ª¶¯£¬¸Ö¶§¶Ô¹öͲµÄ×ÜѹÁ¦µÄ´óС½üËƵÈÓÚ¸Ö¶§µÄÖØÁ¦£®È¡µ±µØµÄÖØÁ¦¼ÓËÙ¶Èg=10m/s2£®ÊÔÇ󣺣¨1£©¸Ö¶§´ÓƵף¨ÈçͼËùʾλÖã©Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬Ö±µ½b¶Ëµ½´ïƶ¥ËùÐèµÄ×î¶Ìʱ¼ä£®
£¨2£©¸Ö¶§´ÓƵף¨ÈçͼËùʾλÖã©Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬Ö±µ½b¶Ëµ½´ïƶ¥µÄ¹ý³ÌÖе綯»úÖÁÉÙÒª¹¤×÷¶à³¤Ê±¼ä£¿
·ÖÎö £¨1£©Óûʹb¶Ëµ½´ïƶ¥ËùÐèÒªµÄʱ¼ä×î¶Ì£¬ÐèÒªµç¶¯»úÒ»Ö±¹¤×÷£¬Ôò¸Ö¹ìÏÈ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬µ±ËüµÄËٶȵÈÓÚ¹öͲ±ßÔµµÄÏßËٶȺó£¬×öÔÈËÙÖ±ÏßÔ˶¯£®
£¨2£©Óûʹµç¶¯»ú¹¤×÷µÄʱ¼ä×î¶Ì£¬¸Ö¹ìµÄ×îºóÒ»¶ÎÔ˶¯Òª¹Ø±Õµç¶¯»ú£¬¸Ö¹ìÔȼõËÙÉÏÉý£¬¼´¸Ö¹ìÏȼÓËÙºóÔÈËÙ£¬×îºó¼õËÙ£»¹Êµç»ú¹¤×÷ʱ¼äµÈÓÚ³ýÈ¥¼õËÙÍâ¸Ö¹ìµÄÔ˶¯Ê±¼ä£®
½â´ð ½â£º£¨1£©¸Ö¶§¿ªÊ¼Êܵ½µÄ»¬¶¯Ä¦²ÁÁ¦Îª£ºf1=¦Ìmg=3¡Á103N£¬
ÉèбÆÂÓëˮƽÃæµÄ¼Ð½ÇΪ¦Á£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºFf-mgsin¦Á=ma1£¬
´úÈëÊý¾Ý½âµÃ£º${a_1}=2m/{s^2}$£¬
¸Ö¶§×öÔȼÓËÙÔ˶¯µÄʱ¼ä£º${t_1}=\frac{v}{a}=2s$£¬Î»ÒÆ£º${x_1}=\frac{1}{2}{a_1}t_1^2=4m$£¬
Ҫʹb¶Ëµ½´ïƶ¥ËùÐèÒªµÄʱ¼ä×î¶Ì£¬ÐèÒªµç¶¯»úÒ»Ö±¹¤×÷£¬¸Ö¶§ÏÈ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬
µ±ËüµÄËٶȵÈÓÚ¹öͲ±ßÔµµÄÏßËٶȺó£¬×öÔÈËÙÖ±ÏßÔ˶¯£®¸Ö¶§×öÔÈËÙÖ±ÏßÔ˶¯µÄλÒÆ£º
x2=L-l-x1=8m£¬×öÔÈËÙÖ±ÏßÔ˶¯µÄʱ¼ä£º${t_2}=\frac{x_2}{v}=2s$£¬
ËùÐè×î¶Ìʱ¼ä t=t1+t2=4s£»
£¨2£©ÒªÊ¹µç¶¯»ú¹¤×÷ʱ¼ä×î¶Ì£¬¸Ö¶§µÄ×îºóÒ»¶ÎÔ˶¯Òª¹Ø±Õµç¶¯»ú£¬
¸Ö¶§ÔȼõËÙÉÏÉý£¬b¶Ëµ½´ïƶ¥Ê±ËٶȸպÃΪÁ㣮
ÔȼõËÙÉÏÉýʱ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºFf+mgsin¦Á=ma2£¬
´úÈëÊý¾Ý½âµÃ£º${a_2}=4m/{s^2}$£¬
ÔȼõËÙÔ˶¯Ê±¼ä£º${t_3}=\frac{v}{a_2}=1s$£¬
ÔȼõËÙÔ˶¯Î»ÒÆ£º${x_3}=\frac{v}{2}{t_3}=2m$£¬
ÔÈËÙÔ˶¯µÄλÒÆ£ºx4=L-l-x1-x3=6m£¬
µç¶¯»úÖÁÉÙÒª¹¤×÷µÄʱ¼ä£º$t={t_1}+\frac{x_4}{v}=3.5s$£»
´ð£º£¨1£©¸Ö¶§´ÓƵף¨ÈçͼËùʾλÖã©Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬Ö±µ½b¶Ëµ½´ïƶ¥ËùÐèµÄ×î¶Ìʱ¼äÊÇ4s£®
£¨2£©¸Ö¶§´ÓƵף¨ÈçͼËùʾλÖã©Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬Ö±µ½b¶Ëµ½´ïƶ¥µÄ¹ý³ÌÖе綯»úÖÁÉÙÒª¹¤×÷3.5s£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·¸Ö¹ìµÄÔ˶¯¹æÂÉ£¬È»ºó·Ö½×¶Î¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â¼ÓËٶȣ¬ÔÙ¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â£®
A£® | 5W | B£® | 10W | C£® | 50W | D£® | 100W |
A£® | ABµÄ¼ÓËٶȾùΪ3.0m/s2 | B£® | ABµÄ¼ÓËٶȾùΪ3.3m/s2 | ||
C£® | A¶ÔBµÄ×÷ÓÃÁ¦Îª3.3N | D£® | A¶ÔBµÄ×÷ÓÃÁ¦Îª3.0N |
A£® | Èç¹ûa¡¢b´øÕýµç£¬ÄÇôcÒ»¶¨´ø¸ºµç | B£® | ÔÈÇ¿µç³¡³¡Ç¿µÄ´óСΪ$\frac{\sqrt{3}kq}{{l}^{2}}$ | ||
C£® | ÖʵãcµÄµçÁ¿´óСΪ$\sqrt{2}$q | D£® | ÔÈÇ¿µç³¡µÄ·½ÏòÓëab±ß´¹Ö±±³Àëc |