题目内容
如图所示,一平板车质量M=100千克,停在水平路面上,车身的平板离地面的高度h=1.25m,一质量m=50千克的小物块置于车的平板上,它到车尾端的距离b=1m,与车板间的动摩擦系数μ=0.20,今对平板车施一水平向右的恒力F=500N,使车向前行驶,结果物块从车板上滑落,取g=10m/s2.求:(不计路面与平板车间以及轮轴之间的摩擦)
(1)物块滑落前,平板车的加速度a1的大小;
(2)物块离开平板车时,车的速度v1和物块的速度v2的大小
(3)物块落地点到车尾的水平距离s.
(1)物块滑落前,平板车的加速度a1的大小;
(2)物块离开平板车时,车的速度v1和物块的速度v2的大小
(3)物块落地点到车尾的水平距离s.
(1)设物块与车板间的摩擦力为f,则有
F-f=Ma1
f=μmg
解得:a1=4m/s2
(2)设车启动至物块离开车板经历的时间为t1,物块的加速度为a2,则
f=ma2
解得:a2=2m/s2
a1t12-
a2t12=b
解得:t1=1s
物块离开车板时刻,车和物块的速度分别
v1=a1t1=4m/s
v2=a2t1=2m/s
(3)物块离车板后作平抛运动,所经历的时间为t2,走过的水平距离为s2,则
s2=vt2
h=
gt22
解之得:t2=0.5s s2=1m
在这段时间内车的加速度 a3=
=5m/s2
车运动的距离s1=v1t2+
a3t22=2.625m
s=s1-s2=1.625m
答:(1)物块滑落前,平板车的加速度a1的大小为4m/s2;
(2)物块离开平板车时,车的速度v1为4m/s,物块的速度v2的大小为2m/s;
(3)物块落地点到车尾的水平距离s为1.625m.
F-f=Ma1
f=μmg
解得:a1=4m/s2
(2)设车启动至物块离开车板经历的时间为t1,物块的加速度为a2,则
f=ma2
解得:a2=2m/s2
1 |
2 |
1 |
2 |
解得:t1=1s
物块离开车板时刻,车和物块的速度分别
v1=a1t1=4m/s
v2=a2t1=2m/s
(3)物块离车板后作平抛运动,所经历的时间为t2,走过的水平距离为s2,则
s2=vt2
h=
1 |
2 |
解之得:t2=0.5s s2=1m
在这段时间内车的加速度 a3=
F |
M |
车运动的距离s1=v1t2+
1 |
2 |
s=s1-s2=1.625m
答:(1)物块滑落前,平板车的加速度a1的大小为4m/s2;
(2)物块离开平板车时,车的速度v1为4m/s,物块的速度v2的大小为2m/s;
(3)物块落地点到车尾的水平距离s为1.625m.
练习册系列答案
相关题目