题目内容
【题目】如图,有一个在水平面上固定放置的气缸,由a、b、c三个粗细不同的同轴绝热圆筒组成,a、b、c的横截面积分别为2S、S和3S。已知大气压强为p0。两绝热活塞A和B用一根长为4l的不可伸长的细线相连,两活塞之间密封有温度为T0的空气,开始时,两活塞静止在图示位置。现对气体加热,使其温度缓慢上升,两活塞缓慢移动,忽略两活塞与圆筒之间的摩擦。求:
(1)加热前被封闭气体的压强和细线中的拉力;
(2)气体温度上升到多少时,其中一活塞恰好移至其所在圆筒与b圆筒连接处;
(3)气体温度上到4T0/3时,封闭气体的压强。
【答案】(1)P0;0
(2)
(3)
【解析】试题分析:(1)设加热前被封闭气体的压强为p1,细线的拉力为FT,则由力平衡条件可得,
对活塞A:
对活塞B:
解得,
(2)此时气体的体积为
对气体加热后,两活塞将向右缓慢移动,活塞A恰好移至其所在圆筒与b圆筒连接处的过程中气体的压强p1保持不变,提提增大,直至活塞A移动l为止。
此时气体的体积为,设此时温度为T2,由盖·吕萨克定律可得
解得:
(3)活塞A被挡住后,继续对气体加热,气体做等容变化,由查理定律得,
由题意得,
代入数据得,
练习册系列答案
相关题目