题目内容

一物体被水平抛出后,经时间t,其水平位移与竖直位移之比为 3:2,在3t时刻,它相对抛出点的水平位移、竖直位移记为x、y;它的水平速度、竖直速度记为vx、vy,则(  )
A、x:y=1:2,vx:vy=1:4B、x:y=1:1,vx:vy=1:2C、x:y=3:10,vx:vy=3:20D、x:y=2:5,vx:vy=1:5
分析:平抛运动水平方向有:x=v0t,vx=v0,竖直方向有:y=
1
2
gt2
,vy=gt,由此根据经时间t,其水平位移与竖直位移之比为3:2列方程,可以求出在3t时刻其水平、竖直位移之比和水平竖直速度之比.
解答:解:根据平抛运动规律有:
水平方向:x=v0t,vx=v0
竖直方向:y=
1
2
gt2
,vy=gt,
根据时间t,其水平位移与竖直位移之比为 3:2得:
x
y
=
v0t
1
2
gt2
=
3
2
vx
vy
=
v0
gt
=
3
4

则在3t时刻:
x′
y′
=
v03t
1
2
g(3t)2
=
1
2
v
x
v
y
=
v0
g×3t
=
1
4
,故A正确,BCD错误.
故选:A.
点评:解决本题的关键是理解平抛运动水平和竖直方向的特点,熟练应用平抛运动规律.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网