题目内容
16.如图所示,a是地球赤道上随地球一起转动的物体,b、c、d是人造地球卫星,b在近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,则有( )A. | a的向心加速度等于重力加速度g | B. | 在相同时间内b转过的弧长最长 | ||
C. | c在4h内转过的圆心角是$\frac{π}{3}$ | D. | d的运动周期有可能是30h |
分析 同步卫星的周期必须与地球自转周期相同,角速度相同,根据a=ω2r比较a与c的向心加速度大小,再比较c的向心加速度与g的大小.根据万有引力提供向心力,列出等式得出角速度与半径的关系,分析弧长关系.根据开普勒第三定律判断d与c的周期关系.
解答 解:A、同步卫星的周期必须与地球自转周期相同,角速度相同,则知a与c的角速度相同,
根据a=ω2r知,c的向心加速度大于a的向心加速度.
由$\frac{GMm}{{r}^{2}}$=mg,
得g=$\frac{GM}{{r}^{2}}$,卫星的轨道半径越大,向心加速度越小,
则c的向心加速度小于b的向心加速度,
而b的向心加速度约为g,所以知a的向心加速度小于重力加速度g.故A错误;
B、由$\frac{GMm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$,
得v=$\sqrt{\frac{GM}{r}}$,卫星的半径越大,速度越小,所以b的速度最大,在相同时间内转过的弧长最长.故B正确;
C、c是地球同步卫星,周期是24h,则c在4h内转过的圆心角是$\frac{π}{3}$.故C正确;
D、由开普勒第三定律$\frac{{r}^{3}}{{T}^{2}}$=k知,卫星的半径越大,周期越大,所以d的运动周期大于c的周期24h.故D正确;
故选:BCD.
点评 对于卫星问题,要建立物理模型,根据万有引力提供向心力,分析各量之间的关系,并且要知道同步卫星的条件和特点.
练习册系列答案
相关题目
6.人造卫星绕地球的运动可看做匀速圆周运动,已知地球的半径为R,质量为M,自转角速度为ω,万有引力常量为G,地球同步卫星与地球表面间的距离为h,下列计算错误的是( )
A. | 地球近地卫星做匀速圆周运动的线速度为ωR | |
B. | 地球近地卫星做匀速圆周运动的线速度为$\sqrt{\frac{GM}{R}}$ | |
C. | 地球同步卫星的运行速度大小为ω(R+h) | |
D. | 地球同步卫星的运行速度大小为$\sqrt{\frac{GM}{R+h}}$ |
4.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示,以下判断正确的是( )
A. | 线圈转动的角速度为50π rad/s | |
B. | 电流表的示数为10$\sqrt{2}$A | |
C. | 0.01s时线圈平面与磁场方向平行 | |
D. | 0.02s时电阻R中电流的方向自左向右 |
1.某同学将质量为m的一矿泉水瓶(可看成质点)竖直向上抛出,水瓶以$\frac{5g}{4}$的加速度匀减速上升,上升的最大高度为H.水瓶往返过程受到的阻力大小不变.则( )
A. | 上升过程中水瓶的动能改变量为$\frac{5}{4}$mgH | |
B. | 上升过程中水瓶的机械能减少了$\frac{5}{4}$mgH | |
C. | 水瓶落回地面时动能大小为$\frac{mgH}{4}$ | |
D. | 水瓶上升过程处于超重状态,下落过程处于失重状态 |
8.自耦变压器的铁芯上只绕有一个线圈,原、副线圈都只取该线圈的某部分.一升压式理想自耦调压变压器的电路如图所示,其原线圈匝数可调.P为自耦变压器的滑片,Q为滑动变阻器的滑动触头,原线圈接在电压有效值恒定的交流电源上,下列说法正确的是( )
A. | Q不动,P向下移动,则电流表的示数减小,电压表的示数增大 | |
B. | Q不动,P向上移动,则电流表的示数减小,电压表的示数减小 | |
C. | P不动,Q向上移动,则电流表的示数增大,电压表的示数不变 | |
D. | P不动,Q向下移动,则电流表的示数增大,电压表的示数不变 |
5.如图所示,同一物体分别沿斜面AD和BD自顶点由静止开始下滑,该物体与斜面间的动摩擦因数相同,则下列说法正确的是( )
A. | 物体克服摩擦力所做的功相同 | |
B. | 物体克服摩擦力所做的功平均功率相同 | |
C. | 合力所做的功相同 | |
D. | 物体到达斜面底端时,重力的功率相同 |
6.一正弦交流电的电压随时间变化规律如图所示,则交流电的( )
A. | 电压瞬时值表达式为u=100cos(25t)V | B. | 周期为0.04s | ||
C. | 电压有效值为100$\sqrt{2}$V | D. | 频率为50Hz |