ÌâÄ¿ÄÚÈÝ
Èçͼ£¨1£©Ëùʾ£¬Õæ¿ÕÖÐ×ã¹»´óµÄÁ½¸ö»¥ÏàƽÐеĽðÊô°åa¡¢bÖ®¼äµÄ¾àÀëΪd£¬Á½°åÖ®¼äµÄµçѹ°´Èçͼ£¨2£©ËùʾµÄ¹æÂÉ×öÖÜÆÚÐԵı仯£¨µ±a±ÈbµçÊƸßʱ£¬µçѹΪÕý£¬µ±a±ÈbµçÊƵÍʱ£¬µçѹΪ¸º£©£¬Æäµçѹ±ä»¯ÖÜÆÚΪT£¬µçѹµÄ×î´óֵΪU£®Ò»¸öÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄ´øÕýµçÁ£×Ó£¨ÖØÁ¦²»¼Æ£©Ôڵ糡Á¦µÄ×÷ÓÃÏ£¬ÔÚt=
ʱ¿Ì´Óa°åµÄС¿×ÖÐÓɾ²Ö¹¿ªÊ¼Ïòb°åÔ˶¯£®
£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËٶȴóСΪ¶à´ó£¿
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ¶àÉÙ£¿£¨ÒÑÖªÁ£×Ó²»»áÓë½ðÊô°åÏàÅö£©
T | 6 |
£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËٶȴóСΪ¶à´ó£¿
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ¶àÉÙ£¿£¨ÒÑÖªÁ£×Ó²»»áÓë½ðÊô°åÏàÅö£©
·ÖÎö£º¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó¼ÓËٶȣ»¶ÔÁ£×ÓµÄÔ˶¯·Ö¶ÎÑо¿£¬·Ö±ðÇó³ö¸÷¶ÎµÄλÒÆ£¬¿ÉÒÔÀûÓÃÔȼÓËÙºÍÔȼõËÙÔ˶¯µÄ¶Ô³ÆÐÔÇó¼õËÙµÄλÒÆ£®
½â´ð£º½â£º£¨1£©ÉèÁ£×ӵļÓËٶȴóСΪa£¬ÓУº
qE=ma
ÆäÖÐE=
ÁªÁ¢µÃ£ºa=
£¨2£©Á£×ÓÔÚ
ÖÁ
ÄÚÏòÓÒÔȼÓËÙ£¬Ôò£º
X1=
a(
)2=
Á£×ÓÔÚ
-
ÄÚÏòÓÒÔȼõËÙµ½ËÙ¶ÈΪÁ㣬Ôò£º
X2=X1=
-
ÄÚ·´ÏòÏò×óÔȼÓËÙ£¬Ôò£º
X3=
a(
)2=
Á£×ÓÔÚ
-
ÄÚ·´ÏòÏò×óÔȼõËÙµ½ËÙ¶ÈΪÁ㣬Ôò£º
X4=X3
ËùÒÔÁ£×Ó¾àa°å¾àÀëΪ£º
X=X1+X2-X3-X4=
´ð£º£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËٶȴóСΪ
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ
qE=ma
ÆäÖÐE=
U |
d |
ÁªÁ¢µÃ£ºa=
qU |
md |
£¨2£©Á£×ÓÔÚ
T |
6 |
T |
2 |
X1=
1 |
2 |
2T |
6 |
qUT2 |
18md |
Á£×ÓÔÚ
3T |
6 |
5T |
6 |
X2=X1=
qUT2 |
18md |
5T |
6 |
6T |
6 |
X3=
1 |
2 |
T |
6 |
qUT2 |
72md |
Á£×ÓÔÚ
6T |
6 |
7T |
6 |
X4=X3
ËùÒÔÁ£×Ó¾àa°å¾àÀëΪ£º
X=X1+X2-X3-X4=
qUT2 |
12md |
´ð£º£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËٶȴóСΪ
qU |
md |
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ
qUT2 |
12md |
µãÆÀ£º±¾ÌâµÄÄѵãÔÚÓÚÁ£×ÓµÄÔ˶¯ÓмÓËÙÓмõËÙ£¬×¢ÒâÓ¦ÓÃÔ˶¯µÄ¶Ô³ÆÐÔÇóλÒÆ¿ÉÒÔ¼ò»¯ÔËË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿