ÌâÄ¿ÄÚÈÝ
Èçͼ£¨1£©ËùʾΪʾ²¨Æ÷µÄ²¿·Ö¹¹Ô죮Õæ¿ÕÊÒÖе缫 K Á¬Ðø²»¶ÏµÄ·¢Éäµç×Ó£¨³õËÙ²»¼Æ£©£¬¾¹ýµçѹΪU0 µÄ¼ÓËٵ糡ºó£¬ÓÉAС¿× f ÑØˮƽ½ðÊô°å A¡¢B ¼äµÄÖÐÐÄÖáÏßÉäÈë°å¼ä£¬°å k f ³¤Îª l£¬Á½°åÏà¾à d£¬µç×Ó´©¹ýÁ½°åºó£¬´òÔÚÓ«¹âÆÁ ÉÏ£¬ÆÁµ½Á½°å±ßÔµµÄ¾àÀëΪ L£¬ÆÁÉϵÄÖеãΪ O£¬ÆÁÉÏ a¡¢b Á½µãµ½µã O µÄ¾àÀë¾ùΪ s£®ÈôÔÚ A¡¢B Á½°å¼ä¼ÓÉϱ仯µÄµçѹ£¬ÔÚÿ¸öµç×Óͨ¹ý¼«°åµÄ¼«¶Ìʱ¼äÄÚ£¬µç³¡¿ÉÊÓ×÷ºã¶¨µÄ£®ÏÖÒªÇó t=0 ʱ£¬½øÈëÁ½°å¼äµÄµç×Ó³öƫתµç³¡ºó´òÔÚÆÁÉ쵀 a µã£¬È»ºó¾Ê±¼äT ÁÁµãÔÈËÙÉÏÒƵ½ b µã£¬ÔÚÆÁÉÏÐγÉÒ»ÌõÊúÖ±ÁÁÏߣ®µç×ӵĵçÁ¿Îª e£¬ÖÊÁ¿Îª m£®
£¨1£©Çó A¡¢B ¼äµçѹµÄ×î´óÖµ£®
£¨2£©ÍƵ¼³ö¼ÓÔÚ A¡¢B Á½°å¼äµÄµçѹUBA Óë t µÄ¹Øϵʽ£®
£¨3£©ÔÚͼ£¨2£©Öл³ö 0-T ÄÚµÄUBA-t ͼÏóʾÒâͼ£®
£¨1£©Çó A¡¢B ¼äµçѹµÄ×î´óÖµ£®
£¨2£©ÍƵ¼³ö¼ÓÔÚ A¡¢B Á½°å¼äµÄµçѹUBA Óë t µÄ¹Øϵʽ£®
£¨3£©ÔÚͼ£¨2£©Öл³ö 0-T ÄÚµÄUBA-t ͼÏóʾÒâͼ£®
·ÖÎö£º£¨1£©µç×Ó¾¼ÓËٵ糡¼ÓËÙ£¬½øÈëƫתµç³¡£¬×öÀàƽÅ×Ô˶¯£¬³öµç³¡×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½½áºÏµç×Ó´Óƫתµç³¡Éä³ö£¬²»ÂÛU¶à´ó£¬µç×Ó¶¼ºÃÏñ´Óƫתµç³¡µÄÖÐÐÄO¡äÉä³ö£¬Í¨¹ý¼¸ºÎ¹ØϵÇó³öƫתµçѹÓë×îÖÕÆ«ÒÆÁ¿µÄ¹Øϵ£®
£¨2£©Çót=0½øÈëÁ½°å¼äµÄµç×Ó´òÔÚÆÁÉϵÄbµã£¬È»ºóÔÚʱ¼äTÄÚÁÁµãÔÈËÙÉÏÒƵ½aµã£¬Çó³öµç×ÓÔÚÆÁÉϵÄÆ«ÒÆÁ¿Óëʱ¼äµÄ¹Øϵ£¬´Ó¶ø½áºÏµÚ£¨1£©ÎÊÖеĽáÂÛÇó³öUÓëʱ¼äµÄ¹Øϵ£®
£¨3£©¸ù¾ÝUÓëtµÄ¹Øϵʽ×÷³öU-tͼÏó£®
£¨2£©Çót=0½øÈëÁ½°å¼äµÄµç×Ó´òÔÚÆÁÉϵÄbµã£¬È»ºóÔÚʱ¼äTÄÚÁÁµãÔÈËÙÉÏÒƵ½aµã£¬Çó³öµç×ÓÔÚÆÁÉϵÄÆ«ÒÆÁ¿Óëʱ¼äµÄ¹Øϵ£¬´Ó¶ø½áºÏµÚ£¨1£©ÎÊÖеĽáÂÛÇó³öUÓëʱ¼äµÄ¹Øϵ£®
£¨3£©¸ù¾ÝUÓëtµÄ¹Øϵʽ×÷³öU-tͼÏó£®
½â´ð£º½â£º£¨1£©Éèµç×Ó¾U0¼ÓËÙºóµÄËÙ¶ÈΪv0£¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º
eU0=
m
¢Ù
Éèµç×Óƫת·É³öµç³¡Óëˮƽ·½ÏòµÄ¼Ð½ÇΪ¦Õ£®
ÔÚƫתµç³¡ÖУ¬³¡Ç¿E=
¼ÓËÙ¶Èa=
=
¢Ú
Ô˶¯Ê±¼äΪ t1=
¢Û
ƫתλÒÆy1=
a
¢Ü
tan¦Õ=
=
£®¢Ý
ÁªÁ¢µÃ£ºy1=
£¬¢Þ
tan¦Õ=
£®¢ß
ÓÖtan¦Õ=
£¬µÃx=
ËùÒÔµç×Ó´Óƫתµç³¡Éä³ö£¬²»ÂÛU¶à´ó£¬µç×Ó¶¼ºÃÏñ´Óƫתµç³¡µÄÖÐÐÄO¡äÉä³ö£®Èçͼ£¬Óɼ¸ºÎ¹ØϵµÃ£º
=
¢à
µÃy=
=
¢á
È¡y=
£¬µÃA¡¢B¼äµçѹµÄ×î´óÖµUAB=
¢â
£¨2£©ÁÁµãÔÈËÙÉÏÒƵÄËÙ¶ÈΪ v=
£¨11£©
ÓÉ¢áµÃ£ºUAB=
£¨
s-vt£©=
£¨
s-
t£© £¨12£©£®
£¨3£©ÓÉÉÏʽ£¨12£©µÃ£¬ÈçͼËùʾUBA-t ͼÏóʾÒâͼÈçͼËùʾ£®ÆäÖÐUAB=
£®
´ð£º
£¨1£©ABÁ½°å¼äËù¼ÓµçѹµÄ×î´óֵΪ
£®
£¨2£©¼ÓÔÚABÁ½°å¼äµçѹUÓëʱ¼ät£¨0¡Üt¡ÜT£©µÄ¹ØϵʽΪUAB=
£¨
s-
t£©£®
£¨3£©ÈçͼËùʾUBA-t ͼÏóʾÒâͼÈçͼËùʾ£®ÆäÖÐUAB=
£®
eU0=
1 |
2 |
v | 2 0 |
Éèµç×Óƫת·É³öµç³¡Óëˮƽ·½ÏòµÄ¼Ð½ÇΪ¦Õ£®
ÔÚƫתµç³¡ÖУ¬³¡Ç¿E=
U |
d |
¼ÓËÙ¶Èa=
eE |
m |
eU |
md |
Ô˶¯Ê±¼äΪ t1=
l |
v0 |
ƫתλÒÆy1=
1 |
2 |
t | 2 1 |
tan¦Õ=
vy |
v0 |
at |
v0 |
ÁªÁ¢µÃ£ºy1=
Ul2 |
4dU0 |
tan¦Õ=
Ul |
2dU0 |
ÓÖtan¦Õ=
y1 |
x |
l |
2 |
ËùÒÔµç×Ó´Óƫתµç³¡Éä³ö£¬²»ÂÛU¶à´ó£¬µç×Ó¶¼ºÃÏñ´Óƫתµç³¡µÄÖÐÐÄO¡äÉä³ö£®Èçͼ£¬Óɼ¸ºÎ¹ØϵµÃ£º
y |
y1 |
L+0.5l |
0.5l |
µÃy=
(2L+l)y1 |
l |
(2L+l)Ul |
4dU0 |
È¡y=
s |
2 |
2dU0s |
(2L+l)l |
£¨2£©ÁÁµãÔÈËÙÉÏÒƵÄËÙ¶ÈΪ v=
s |
T |
ÓÉ¢áµÃ£ºUAB=
4dU0 |
(2L+l)l |
1 |
2 |
4dU0 |
(2L+l)l |
1 |
2 |
s |
T |
£¨3£©ÓÉÉÏʽ£¨12£©µÃ£¬ÈçͼËùʾUBA-t ͼÏóʾÒâͼÈçͼËùʾ£®ÆäÖÐUAB=
2dU0s |
(2L+l)l |
´ð£º
£¨1£©ABÁ½°å¼äËù¼ÓµçѹµÄ×î´óֵΪ
2dU0s |
(2L+l)l |
£¨2£©¼ÓÔÚABÁ½°å¼äµçѹUÓëʱ¼ät£¨0¡Üt¡ÜT£©µÄ¹ØϵʽΪUAB=
4dU0 |
(2L+l)l |
1 |
2 |
s |
T |
£¨3£©ÈçͼËùʾUBA-t ͼÏóʾÒâͼÈçͼËùʾ£®ÆäÖÐUAB=
2dU0s |
(2L+l)l |
µãÆÀ£º½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåµç×ÓÔÚÕû¸ö¹ý³ÌÖеÄÔ˶¯Çé¿ö£¬ÔËÓÃÔ˶¯Ñ§¹«Ê½½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÆ«ÒÆÁ¿£¬Í¨¹ýÆ«ÒÆÁ¿ÓëƫתµçѹµÄ¹Øϵ£¬µÃ³öUÓëtµÄ¹Øϵʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿