题目内容
【题目】如图所示,质量为2m的小车静止于光滑的水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为是1.5R的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿轨道下滑,重力加速度为g。
(1)若固定小车,求滑块运动过程中对小车的最大压力F
(2)若不固定小车,求小车运动过程中的最大速度V
(3)若不固定小车,且滑块和小车之间的摩擦因数μ=0.8,试分析滑块能否从C点滑出,求整个运动过程中小车的位移x
【答案】(1),方向向下(2)方向向左(3)
【解析】(1)从A到B,滑块速度最大,由机械能守恒定律
在B点,
所以由牛顿第三定律压力F=-F1,所以压力为,方向向下
(2)从A到B,滑块的速度最大,
水平方向动量守恒, ,
所以;方向向左
(3)假设滑块未从小车上滑出,设相对位移是s,
由水平方向动量守恒,滑块和小车最后均静止,
所以,假设成立
由水平方向动量守恒,任何时刻
所以任意一段时间内车和滑块的平均水平速度之比为,所以任意一段时间内车和滑块的水平位移之比为,所以车的位移为,方向向左.
练习册系列答案
相关题目