题目内容

在冬天,高为h=1.25m的平台上,覆盖一层薄冰,一乘雪橇的滑雪爱好者,从距平台边缘s=24m处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为θ=45°,取重力加速度g=10m/s2.求:
(1)滑雪者着地点到平台边缘的水平距离是多大;
(2)若平台上的薄冰面与雪橇间的动摩擦因素为μ=0.05,则滑雪者的初速度是多大?
分析:(1)滑雪爱好者滑离平台后做平抛运动,根据平抛运动的特点及基本公式即可求解;
(2)滑雪者在平台上滑动时,受到滑动摩擦力作用而减速度,对滑动过程运用由动能定理即可求解.
解答:解:(1)把滑雪爱好者着地时的速度vt分解为如图所示的v0、v两个分量
由 h=
1
2
gt2
得t=0.5s
则  v=gt=5 m/s
v0=vtan45°=5 m/s
着地点到平台边缘的水平距离:x=v0t=2.5m
(2)滑雪者在平台上滑动时,受到滑动摩擦力作用而减速度,由动能定理
-μmgs=
1
2
mv02-
1
2
mv2

得:v=7m/s,即滑雪者的初速度为7m/s.
答:(1)滑雪者着地点到平台边缘的水平距离是2.5m;(2)滑雪者的初速度为7m/s.
点评:该题考查了平抛运动的基本公式和定能定理得应用,难度不大,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网