题目内容

如图所示,质量为m=lkg的小球穿在斜杆上,已知杆与球间的动摩擦因数μ为0.5,斜杆与水平方向的夹角为θ=37°.若球受到一大小为F=30N的水平推力作用,可使小球沿杆向上从静止加速滑动(g取10m/s2),求:
(1)小球沿杆向上加速滑动的加速度大小;
(2)若F作用2s后撤去,小球上滑过程中距出发点最大距离Sm
(3)若从撤去力F开始计时,小球在随后3s内通过的路程.

解:(1)小球受力分析图如(1)
有Fcosθ-mgsinθ-f=ma1
f=μ(mgcosθ+Fsinθ)
联立两式得,
故小球沿杆上滑的加速度大小为5m/s2
(2)力F作用2s内的位移
2s末的速度v1=a1t1=5×2m/s=10m/s
撤去力F后受力如图(2),小球的加速度=10m/s2
小球减速到0的位移
sm=x1+x2=10+5m=15m
故小球上滑过程中距出发点最大距离Sm为15m.
(3)撤去F后小球减速到0所需的时间
则小球返回的时间t3=t-t2=2s
小球返回受力如图(3),加速度=2m/s2
所以
则s=x2+x3=9m
故小球在随后3s内通过的路程为9m.

分析:(1)对小球进行受力分析,求出合力,根据牛顿第二定律求出加速度.
(2)先求出在F作用下上滑的位移,再求出撤去外力F后小球的加速度,求出匀减速运动到0的位移,两个位移之和为小球距出发点的最大距离.
(3)先求出撤去外力后,速度减小到0的时间,求出小球返回时的加速度以及返回的位移,上升和返回的位移之和为小球通过的路程.
点评:解决本题的关键知道小球经历的三段过程加速度不同,根据牛顿第二定律正确的解出三个加速度,然后通过运动学公式求解.
练习册系列答案
相关题目
(选修3-5)
(1)核能是一种高效的能源.
①在核电站中,为了防止放射性物质泄漏,核反应堆有三道防护屏障:燃料包壳,压力壳和安全壳(见图甲).结合图乙可知,安全壳应当选用的材料是
混凝土
混凝土


②图丙是用来监测工作人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1mm铝片和3mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,结合图2分析工作人员受到了
β
β
射线的辐射;当所有照相底片被感光时,工作人员受到了
γ
γ
射线的辐射.
(2)下列说法正确的是
A.卢瑟福的a粒子散射实验揭示了原子核有复杂的结构
B.受普朗克量子论的启发,爱因斯坦在对光电效应的研究中,提出了光子说
C.核反应方程
 
238
92
U→
 
234
90
Th+
 
4
2
He属于裂变
D.宏观物体的物质波波长非常小,极易观察到它的波动性
E.根据爱因斯坦质能方程,物体具有的能量和它的质量之间存在着正比关系
F.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的
G.中子与质子结合成氘核的过程中需要吸收能量
H.升高放射性物质的温度,可缩短其半衰期
I.氢原子辐射出一个光子后,根据玻尔理论可知氢原子的电势能增大,核外电子的运动加速度增大
J.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应
(3)如图所示,质量为M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点).一个质量为m=20g的子弹以500m/s的水平速度迅即射穿A后,速度变为100m/s,最后物体A静止在车上.若物体A与小车间的动摩擦因数μ=0.5.(g取10m/s2
①平板车最后的速度是多大?
②全过程损失的机械能为多少?
③A在平板车上滑行的距离为多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网