题目内容
如图所示,A、B两物体叠放在一起,先用手托住B使其静止在固定斜面上,然后将其释放,它们同时沿斜面滑下,斜面与两物体之间的动摩擦因数相同,mA>mB,则
A.释放前,物体B受到物体A对它的压力
B.释放前,物体B与物体A之间无相互作用力
C.下滑过程中,物体B受到物体A对它的压力
D.下滑过程中,物体B与物体A之间无相互作用力
AD
解析试题分析:设AB之间相互作用力为F,释放前,A要保持静止即平衡,沿斜面方向有,整理可判断A受到B沿斜面向上的支持力,B受到A对其沿斜面向下的压力,选项A对B错。释放后整体受力分析有
,即
,单独分析A,有
,计算得
,即AB之间没有相互作用力,选项C错D对。
考点:牛顿运动定律 整体法隔离法
![](http://thumb.zyjl.cn/images/loading.gif)
对于静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用的瞬间
A.物体立即获得速度 | B.物体立即获得加速度 |
C.物体同时获得速度和加速度 | D.由于物体未来得及运动,所以速度和加速度都为零 |
如图,光滑斜面PMNQ的倾角为θ,斜面上放置一矩形导体线框abcd,其中ab边长为l1,bc边长为l2,线框质量为m、电阻为R,有界匀强磁场的磁感应强度为B,方向垂直于斜面向上,e f为磁场的边界,且e f∥MN.线框在恒力F作用下从静止开始运动,其ab边始终保持与底边MN平行,F沿斜面向上且与斜面平行.已知线框刚进入磁场时做匀速运动,则下列判断正确的是
A.线框进入磁场前的加速度为![]() |
B.线框进入磁场时的速度为![]() |
C.线框进入磁场时有a→b→c→d方向的感应电流 |
D.线框进入磁场的过程中产生的热量为(F ? mgsinθ)l1 |
某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角α=60°,使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行,经时间t后,将动力的方向沿逆时针旋转60°同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计,下列说法中正确的是
A.加速时加速度的大小为![]() |
B.加速时动力的大小等于![]() |
C.减速时动力的大小等于![]() |
D.减速飞行时间t后速度为零 |
如图所示,A是半径为r的圆形光滑轨道,固定在木板B上,竖直放置;B的左右两侧各有一光滑挡板固定在地面上,使其不能左右运动,小球C静止放在轨道最低点,A,B,C质量相等。现给小球一水平向右的初速度v0,使小球在圆型轨道的内侧做圆周运动,为保证小球能通过轨道的最高点,且不会使B离开地面,初速度v0必须满足( )(重力加速度为g)
A.最小值为![]() | B.最大值为![]() |
C.最小值为![]() | D.最大值为![]() |
如图所示,水平轻弹簧左端固定在竖直墙上,右端被一用轻质细线拴住的质量为m的光滑小球压缩(小球与弹簧未拴接)。小球静止时离地高度为h。若将细线烧断,则(取重力加速度为g,空气阻力不计)
A.小球立即做平抛运动 |
B.细线烧断瞬间小球的加速度为重力加速度g |
C.小球脱离弹簧后做匀变速运动 |
D.小球落地时重力瞬时功率等于![]() |
荡秋千是儿童喜爱的一项运动,当秋千荡到最高点时,小孩的加速度方向可能是图中的
A.1方向 | B.2方向 |
C.3方向 | D.4方向 |
质量为m的木箱在粗糙水平地面上,当用水平推力F作用于物体上时,物体产生的加速度为α,若作用力变为2F,而方向不变,则木箱产生的加速度α′
A.等于α | B.等于2α |
C.小于2α,大于α | D.大于2α |
如图所示,质量为m=1kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10m/s时,给物体施加一个与速度方向相反的大小为F=2N的恒力,在此恒力作用下(取g=10m/s2)( )
A.物体经10s速度减为零 |
B.物体经5s速度减为零 |
C.物体速度减为零后将保持静止 |
D.物体速度减为零后将向右运动 |