题目内容
已知氢原子基态的电子轨道半径为r0=0.528×10-10m,量子数为n的能级值En=-
.求:
(1)电子在基态轨道上运动的动能;
(2)有一群氢原子处于量子数n=3的激发态,画一能级图,在图上用箭头标明这些氢原子能发出哪几条光谱线?
(3)计算这几条光谱线中波长最短的一条谱线(k=9.0×109N?m2/C2,e=1.60×10-19C,h=6.63×10-34J?s)
13.6eV | n2 |
(1)电子在基态轨道上运动的动能;
(2)有一群氢原子处于量子数n=3的激发态,画一能级图,在图上用箭头标明这些氢原子能发出哪几条光谱线?
(3)计算这几条光谱线中波长最短的一条谱线(k=9.0×109N?m2/C2,e=1.60×10-19C,h=6.63×10-34J?s)
分析:1、根据库仑引力提供向心力求出电子在基态轨道上运动的速率,再求出动能
2、根据高能级跃迁到低能级画图
3、波长最短,即频率最大,能级间发生跃迁时吸收或辐射的光子能量等于两能级间的能级差.
2、根据高能级跃迁到低能级画图
3、波长最短,即频率最大,能级间发生跃迁时吸收或辐射的光子能量等于两能级间的能级差.
解答:解:①根据库仑引力提供向心力得
=m
,
则
m
=
=13.6ev
②画一能级图,
③根据λ=
λ最小,频率最大.
n=1到n=3,λ=λ=
=1.03×1
m
答:(1)电子在基态轨道上运动的动能是13.6eV;
(2)如图
(3)波长最短的一条谱线波长是1.03×-7m
k
| ||
|
| ||
|
则
1 |
2 |
v | 2 |
1 |
2 |
k
| ||
|
②画一能级图,
③根据λ=
C |
γ |
λ最小,频率最大.
n=1到n=3,λ=λ=
hc | ||||
(
|
0 | -7 |
答:(1)电子在基态轨道上运动的动能是13.6eV;
(2)如图
(3)波长最短的一条谱线波长是1.03×-7m
点评:解决本题的关键知道能级间跃迁所满足的规律,即Em-En=hv.
练习册系列答案
相关题目