题目内容
9.如图,多匝线圈A与电键、滑动变阻器相连后接入M、N间的交流电源,B线圈与小灯泡L相连.下列说法正确的是( )A. | L发光时,电路中发生了自感现象 | |
B. | L发光时,A线圈的输入功率等于B线圈的输出功率 | |
C. | 只有在闭合电键瞬间,L才能发光 | |
D. | 若闭合电键后L不发光,将滑动变阻器滑片左移后,L可能会发光 |
分析 首先要注意该电路是研究互感现象的电路依据电磁感应可以判定B中是不是由感应电流;由于接上的是交流电,故不是只在接通瞬间磁通量才变化;
若闭合电键后小灯珠不发光,移动滑动变阻器滑不能改变磁通量变化.
解答 解:A、C、闭合电键后,若电流大小不断变化,则A的磁通量不断变化,B在A的上方,则通过B的磁通量也不断变化,可以在B线圈中产生感应电流,小灯珠可能持续发光,该现象属于互感现象,不是自感.故A错误,C错误.
B、若不计线圈的电阻,L发光时,A线圈的输入功率就等于B线圈的输出功率,故B正确.
D、若闭合电键后小灯珠不发光,将滑动变阻器滑臂左移后,电路中的电流更小,由此产生的磁通量变化更小,小灯珠更不可能会发光,故D错误.
故选:B.
点评 该题考查互感现象与自感现象的区别,关键是要知道交流电与直流电不同,直流电只在闭合和断开瞬间电路才有感应现象,但是交流电电流时刻都在变化.
练习册系列答案
相关题目
19.如图所示,半径可变的四分之一光滑圆弧轨道置于竖直平面内,轨道的末端B处切线水平,现将一小物体从轨道顶端A处由静止释放.若保持圆心的位置不变,改变圆弧轨道的半径(不超过圆心离地的高度).半径越大,小物体( )
A. | 落地时的速度越大 | |
B. | 平抛的水平位移越大 | |
C. | 到圆弧轨道最低点时加速度越大 | |
D. | 落地时的速度与竖直方向的夹角越大 |
20.如图为某磁谱仪部分构件示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中含有电子、正电子和质子,分别以不同速度从上部垂直进入磁场,下列说法正确的是( )
A. | 电子与正电子的偏转方向一定相同 | |
B. | 电子与正电子在磁场中运动轨迹的半径一定相同 | |
C. | 同一粒子动能越大,它在磁场中运动轨迹的半径越大 | |
D. | 仅依据粒子运动轨迹无法判断该粒子是质子还是正电子 |
17.下列说法中正确的是( )
A. | 氡的半衰期为3.8天,若取4个氡原子核,经7.6天后就一定剩下1个氡原子核了 | |
B. | 核反应${\;}_{92}^{235}$U+${\;}_{0}^{1}$n→${\;}_{56}^{141}$Ba+${\;}_{36}^{92}$Kr+mX 是若干核裂变反应中的一种,x是中子,m=3 | |
C. | 光是一种概率波 | |
D. | 光电效应和康普顿效应说明光具有粒子性 | |
E. | 按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,电势能增大,原子的总能量减小 |
1.如图所示,质量为M、内壁光滑且绝缘、底面(与地面的接触面)粗糙的半球形容器静止放在粗糙水平地面上,O为球心.有一质量为m带电小球A(可视为质点)固定在半球底部O′处,O′在球心O的正下方.另有一相同带电小球B静止在容器内壁的P点,OP与水平方向夹角为θ,θ=30°.由于底部小球A逐渐失去部分电荷,小球B缓慢下滑,当小球B重新达到平衡后,则( )
A. | 小球B受到容器的支持力变大 | |
B. | 小球B受到容器的支持力不变 | |
C. | 若底部小球A突然失去全部电荷,在此瞬间容器对地面的压力小于(M+m)g | |
D. | 若底部小球A突然失去全部电荷,在此瞬间容器将受到地面向左的摩擦力 |
18.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R,传送带背面固定有若干根间距为d的平行细金属条,其电阻均为r,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度匀速运动时,电压表的示数为U.则下列说法中正确的是( )
A. | 传送带匀速运动的速率为$\frac{U}{BL}$ | |
B. | 电阻R产生焦耳热的功率为$\frac{U^2}{R}$ | |
C. | 金属条经过磁场区域受到的安培力大小为$\frac{BUd}{R+r}$ | |
D. | 每根金属条经过磁场区域的全过程中克服安培力做功为$\frac{BLUd}{R}$ |
19.CD、EF是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的长度为d,如图所示.导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接.将一阻值也为R的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是( )
A. | 电阻R的最大电流为$\frac{Bd\sqrt{2gh}}{R}$ | B. | 流过电阻R的电荷量为$\frac{BdL}{2R}$ | ||
C. | 整个电路中产生的焦耳热为mgh | D. | 电阻R中产生的焦耳热为$\frac{1}{2}$mg(h-μd) |