题目内容
8.质量为m的运动员从下蹲状态竖直向上起跳,经过时间t,身体伸直并刚好离开地面,离开地面时速度为v在时间t内( )A. | 地面对他的平均作用力为mg | B. | 地面对他的平均作用力为$\frac{mv}{t}$ | ||
C. | 地面对他的平均作用力为m($\frac{v}{t}$-g) | D. | 地面对他的平均作用力为m(g+$\frac{v}{t}$) |
分析 已知初末速度,则由动量定理可求得地面对人的平均作用力.
解答 解:人的速度原来为零,起跳后变化v,则由动量定理可得:
$\overline{F}t$-mgt=△mv=mv
所以:$\overline{F}$=m(g+$\frac{v}{t}$);故D正确,ABC错误;
故选:D
点评 在应用动量定理时一定要注意冲量应是所有力的冲量,不要把重力漏掉.
练习册系列答案
相关题目
12.如图所示,有一台交流发电机E,通过理想升压变压器T1和理想降压变压器T2向远处用户供电,输电线的总电阻为R.T1的输入电压和输入功率分别为U1和P1,它的输出电压和输出功率分别为U2和P2;T2的输入电压和输入功率分别为U3和P3,它的输出电压和输出功率分别为U4和P4.设T1的输入电压U1一定,当用户消耗的电功率变大时,有( )
A. | U2不变,U3变小 | B. | U2减小,U4变大 | C. | P2变大,P3变大 | D. | P1不变,P2变小 |
16.有三个共点力F1、F2、F3作用于某一点,其合力为零.已知F3=5N,现保持其余两力大小和方向不变,只将F3的方向沿顺时针方向绕作用点转动60°,则这三个力的合力大小变为( )
A. | 5$\sqrt{3}$N | B. | 5N | C. | 10N | D. | 仍为零 |
3.在空中下落的雨滴,受到的空气阻力随雨滴下落的速度增大而逐渐增大,在阻力等于重力后,雨滴匀速下落,则雨滴在此后的下落过程中,重力的瞬时功率P1和阻力的瞬时功率P2的大小关系是( )
A. | P1>P2 | B. | P1<P2 | ||
C. | P1=P2 | D. | 条件不足,无法判断 |
13.粗糙水平面上,用水平绳子系一小球作半径为R的匀速圆周运动,小球质量为m,与桌面间的摩擦系数为μ,绳子的拉力为F,则小球经过$\frac{1}{2}$圆周的时间内( )
A. | 绳子的拉力对球不做功 | B. | 绳子的拉力对球做功πRF | ||
C. | 重力和支持力不做功 | D. | 摩擦力对物体做功-μmgRπ |
20.如图所示,内壁光滑的圆管形轨道竖直放置在光滑水平地面上,且恰好处在两固定光滑挡板M、N之间,圆轨道半径为R,其质量为2m,一质量为m的小球能在管内运动,小球可视为质点,管的内径不计,当小球运动到轨道最高点时,圆轨道对地面的压力刚好为零,则下列判断正确的是( )
A. | 小球运动的最小速度为$\sqrt{gR}$ | |
B. | 圆轨道对地面的最大压力为10mg | |
C. | 当小球离挡板N最近时,圆轨道对挡板N的压力大小为5mg | |
D. | 圆轨道对挡板M、N的压力总是为零 |
17.如图所示,N为金属板,M为金属网,它们分别与电池的两极相连,各电池的电动势和极性如图所示,己知金属板的逸出功为4.8eV.现分别用不同频率的光照射金属板(各光子的能量已在图上标出),则下列说法正确的是( )
A. | A图中无光电子射出 | |
B. | B图中光电子到达金属板时的动能大小为1.5eV | |
C. | C图中的光电子能到达金属网 | |
D. | D图中光电子到达金属板时的最大动能为3.5eV |
18.如图所示,在光滑水平面上有ABC三个质量均为m的小球,A带正电,B带负电,C不带电,A,B带电量的绝对值均为Q,B,C两个小球用绝缘细绳连接在一起,当用外力F拉着A球向右运动时,B,C也跟着A球一起向右运动,在运动过程中三个小球保持相对静止共同运动,则( )
A. | BC间绳的拉力大小为$\frac{2}{3}$F | B. | BC间绳的拉力大小为$\frac{1}{3}$F | ||
C. | AB两球间距为$\sqrt{\frac{3K{Q}^{2}}{2F}}$ | D. | AB两球间距为$\sqrt{\frac{3K{Q}^{2}}{F}}$ |