题目内容
【题目】如图所示,一长度LAB=4.98m,倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度LBC=0.4m,离地面高度H=1.4m,在C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶端A 处静止释放质量为m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因素μ=0.1,g 取10m/s2。问:
(1)小物块第一次与挡板碰撞前的速度大小;
(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;
(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r=0.75m,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板?(取)
【答案】(1)7 m/s;(2)63次 24.9m(3)25次
【解析】试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B 点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
(1)从A到C段运用动能定理
mgsin-LAB=mv2
v=7m/s
(2)从开始到最后停下在BC段所经过的路程为x
mgsinLAB-mgx=0
x=24.9m
=31.1
经过AB的次数为312+1=63次
(3)设小物块平抛时的初速度为V0
H -r=gt2
r+=v0t
v0=3 m/s
设第n次后取走挡板
mv2-mv02=2Lbcn
n=25次
练习册系列答案
相关题目