题目内容

【题目】如图,倾斜固定放置的“Π”形光滑金属导轨,位于与水平面成θ角的平面内,导轨宽为L,电阻不计。宽度均为d的矩形有界匀强磁场方向垂直导轨平面向下,磁感应强度大小均为B,两磁场间的距离也为d。质量为m电阻为R的金属杆ab平行于导轨顶部,从距离磁场上边缘h处由静止释放。已知金属杆进入磁场时的速度相等,且始终与导轨接触良好,重力加速度为g

1)求金属杆刚进入磁场时的速度v大小;

2)定性分析金属杆穿过两磁场的过程中能量是如何变化的;

3)分析并说明金属杆释放处与磁场上边缘的距离h需满足的条件;

4)作出金属杆从进入磁场到离开磁场这一过程中的v-t图像。

【答案】(1);(2)金属杆穿过两磁场的过程中,重力势能减少,动能减少,机械能减少;减少的机械能转化为电路中的电能;电能再转化为内能;(3;(4)如图所示:

【解析】

1)金属杆进入磁场前作初速为零的匀加速直线运动,加速度

可得:

2)金属杆穿过两磁场的过程中,重力势能减少,动能减少,机械能减少;减少的机械能转化为电路中的电能;电能再转化为内能。

3)设杆进入磁场时的速度为v1,离开磁场时的速度为v2,进入磁场时的速度为v3,因为杆在两磁场区域间作匀加速直线运动,所以

题目已知:金属杆进入磁场和磁场时的速度相等,即,可得

则杆在磁场内必有作减速运动的过程,所以杆刚进入磁场

由以上式子可得h需满足条件:

4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网