题目内容
如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个高为h的物块上.若物块与地面摩擦不计,则当物块以速度v向右运动至杆与水平方向夹角为θ时,物块与轻杆的接触点为B,下列说法正确的是( )
分析:将物块的速度分解为沿杆子方向和垂直于杆子方向,在垂直于杆子方向上的速度等于B点绕O转动的线速度,根据v=rω可求出杆转动的角速度,再根据杆的角速度和A的转动半径可以求出A的线速度大小.
解答:解:如图所示
根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vB=v沿垂直于杆和沿杆的方向分解成v2和v1,其中v2=vBsinθ=vsinθ,为B点做圆周运动的线速度,v1=vBcosθ为B点沿杆运动的速度.当杆与水平方向夹角为θ时,OB=
A、A、B两点都围绕O点做圆周运动,由于同一杆上运动,故角速度ω相同,由于转动半径不一样,故A、B的线速度不相同,故A错误;
B、由于A、B在同一杆上绕O点做圆周运动,故A、B绕O做圆周运动的角速度相同,故B正确;
C、由于B点的线速度为v2=vsinθ=OBω,所以ω=
=
,故C正确;
D、由C分析知,杆转动的角速度ω=
,所以A的线速度vA=Lω=
,故D错误.
故选:BC
根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vB=v沿垂直于杆和沿杆的方向分解成v2和v1,其中v2=vBsinθ=vsinθ,为B点做圆周运动的线速度,v1=vBcosθ为B点沿杆运动的速度.当杆与水平方向夹角为θ时,OB=
h |
sinθ |
A、A、B两点都围绕O点做圆周运动,由于同一杆上运动,故角速度ω相同,由于转动半径不一样,故A、B的线速度不相同,故A错误;
B、由于A、B在同一杆上绕O点做圆周运动,故A、B绕O做圆周运动的角速度相同,故B正确;
C、由于B点的线速度为v2=vsinθ=OBω,所以ω=
vsinθ |
OB |
vsin2θ |
h |
D、由C分析知,杆转动的角速度ω=
vsin2θ |
h |
Lvsin2θ |
h |
故选:BC
点评:解决本题的关键会根据平行四边形定则对速度进行分解,木块速度在垂直于杆子方向的分速度等于B点转动的线速度.
练习册系列答案
相关题目
如图所示,一根长为L,质量不计的硬杆,在中点及右端各固定一个质量为m的小球,杆可带动小球在竖直平面内绕O点转动.若开始时杆处于水平位置,由静止开始释放,当杆下落到竖直位置时,下列说法中正确的是( )
A、B球的速率为
| ||||
B、B球的机械能减少了
| ||||
C、A球的机械能减少了
| ||||
D、每个小球的机械能都不变 |
如图所示,一根长为L的细杆的一端固定一质量为m的小球,整个系统绕杆的另一端在竖直面内做圆周运动,且小球恰能过最高点.已知重力加速度为g,细杆的质量不计.下列说法正确的是( )
A、小球过最低点时的速度大小为
| ||
B、小球过最高点时的速度大小为
| ||
C、小球过最低点时受到杆的拉力大小为5mg | ||
D、小球过最高点时受到杆的支持力为零 |