题目内容
传送带以恒定速度v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=2kg的小物品轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=20N拉小物品,经过一段时间物品被拉到离地高为H=1.8m的平台上,如图所示.已知物品与传送带这间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:
①物品从传送带底端运动到平台上所用的时间是多少?
②若在物品与传送带达到同速瞬间撤去恒力F,求特品还需多少时间离开皮带?
①物品从传送带底端运动到平台上所用的时间是多少?
②若在物品与传送带达到同速瞬间撤去恒力F,求特品还需多少时间离开皮带?
(1)物品在达到与传送带速度v=4m/s相等前,有:
F+μmgcos37°-mgsin37°=ma1
解得a1=8m/s2
由v=a1t1,t1=0.5s
位移x1=
a1
=1m
随后,有:F-μmgcos37°-mgsin37°=ma2
解得a2=0,即滑块匀速上滑
位移x2=
-x1=2m
t2=
=0.5s
总时间为:t=t1+t2=1s
即物品从传送带底端运动到平台上所用的时间是1s.
(2)在物品与传送带达到同速瞬间撤去恒力F,根据牛顿第二定律,有
μmgcos37°-mgsin37°=ma3
解得:a3=-2m/s2
假设物品向上匀减速到速度为零时,通过的位移为x
x=-
=4m>x2
即物体速度为减为零时已经到达最高点;
由x2=vt3+
a3
解得:t3=(2-
)s(t3=2+
s>0.5s,舍去)
即物品还需(2-
)s离开皮带.
F+μmgcos37°-mgsin37°=ma1
解得a1=8m/s2
由v=a1t1,t1=0.5s
位移x1=
1 |
2 |
t | 21 |
随后,有:F-μmgcos37°-mgsin37°=ma2
解得a2=0,即滑块匀速上滑
位移x2=
H |
sin37° |
t2=
x2 |
v |
总时间为:t=t1+t2=1s
即物品从传送带底端运动到平台上所用的时间是1s.
(2)在物品与传送带达到同速瞬间撤去恒力F,根据牛顿第二定律,有
μmgcos37°-mgsin37°=ma3
解得:a3=-2m/s2
假设物品向上匀减速到速度为零时,通过的位移为x
x=-
v2 |
2a3 |
即物体速度为减为零时已经到达最高点;
由x2=vt3+
1 |
2 |
t | 23 |
解得:t3=(2-
2 |
2 |
即物品还需(2-
2 |
练习册系列答案
相关题目