题目内容

【题目】如图所示,相邻两车站间距相等,在一条直线上。车在两站间匀速行驶时速度均为 ,每次靠站停顿时间均为t,某同学在车站1与车站2之间距离车站2较近的某一位置,当车从车站3开动的同时,他向车站2以速度 匀速奔跑,并恰能赶上汽车,车长不计。于是该同学得出结论:若他仍以此平均速度从原位置向车站1奔跑,也一定能赶得上这辆车。请你通过计算判断这位同学的结论是否正确?并分析此结论成立的初位置满足的条件是什么?

【答案】错误,初位置在车站1,2间右侧三分点及其左侧。

【解析】

试题若要使人和车在车站2相遇,设人距车站2的距离为x,则有:

若要使人能在车站1赶上车,则有:

联立两式可得:,即只有当时,人才有可能在站台1上赶上车;

故该同学的推论是错误的;

一题一题找答案解析太慢了
下载作业精灵直接查看整书答案解析
立即下载
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网