ÌâÄ¿ÄÚÈÝ
2£®ÈçͼËùʾ£¬Á½¸ùÍêÈ«ÏàͬµÄ¹â»¬µÄ$\frac{1}{4}$Ô²»¡¹ìµÀ£¬°ë¾¶Îªr£¬¼ä¾àΪL£¬ËüÃǵĸ߶ÈÏàͬ£¬¼´a¡¢bÔÚͬһˮƽÃæÉÏ£¬¹ìµÀµç×è²»¼Æ£®ÔÚ¹ìµÀ¶¥¶ËÁ¬ÓÐÒ»×èֵΪRµÄµç×裬Õû¸ö×°Öô¦ÔÚÒ»ÊúÖ±ÏòÉϵÄÔÈÇ¿´Å³¡ÖУ¬´Å¸ÐӦǿ¶ÈΪB£®ÏÖÓÐÒ»¸ù³¤¶ÈÉÔ´óÓÚL¡¢µç×è²»¼ÆµÄ½ðÊô°ô´Ó¹ìµÀ×îµÍλÖÃcd¿ªÊ¼£¬ÔÚÀÁ¦×÷ÓÃÏÂÒÔ³õËÙ¶Èv0ÏòÓÒÑعìµÀ×öÔÈËÙÔ²ÖÜÔ˶¯ÖÁab´¦£¬ÒÑÖªcd°ôÇиî´Å¸ÐÏß²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ°´ÓàÏÒ¹æÂɱ仯£®Ôò¸Ã¹ý³ÌÖУ¨¡¡¡¡£©A£® | ͨ¹ýRµÄµçÁ÷·½ÏòΪÓÉeµ½f | B£® | ͨ¹ýRµÄµçÁ÷·½ÏòΪÓÉfµ½e | ||
C£® | Á÷¹ýRµÄµçÁ¿Îª$\frac{¦ÐBLr}{2R}$ | D£® | RÉϲúÉúµÄÈÈÁ¿Îª$\frac{{¦Ð{B^2}{L^2}r{v_0}}}{4R}$ |
·ÖÎö ¸ù¾ÝÀã´Î¶¨ÂÉÅжϸÐÓ¦µçÁ÷µÄ·½Ïò£®½ðÊô°ô×öÔÈËÙÔ²ÖÜÔ˶¯£¬»Ø·ÖвúÉúÕýÏÒʽ½»±äµçÁ÷£¬¸ÐÓ¦µç¶¯ÊƵÄ×î´óֵΪEm=BLv0£¬ÓÐЧֵΪE=$\frac{\sqrt{2}}{2}$Em£¬¸ù¾Ý½¹¶ú¶¨ÂÉQ=$\frac{{E}^{2}}{R}$tÇó³öÇó½â½ðÊô°ô²úÉúµÄÈÈÁ¿£®
ͨ¹ýRµÄµçÁ¿Óɹ«Ê½q=N$\frac{¡÷∅}{R+r}$Çó½â£®
½â´ð ½â£ºA¡¢B¡¢½ðÊô°ô´Ó¹ìµÀ×îµÍλÖÃcdÔ˶¯µ½ab´¦µÄ¹ý³ÌÖУ¬´©¹ý»Ø·µÄ´ÅͨÁ¿¼õС£¬¸ù¾ÝÀã´Î¶¨ÂÉÅжϵÃ֪ͨ¹ýRµÄµçÁ÷·½ÏòΪÓÉfµ½e£®¹ÊA´íÎó£¬BÕýÈ·£®
C¡¢Í¨¹ýRµÄµçÁ¿Óɹ«Ê½£ºq=N$\frac{¡÷∅}{R+r}$=$\frac{BLr}{R}$£®¹ÊC´íÎó£®
D¡¢½ðÊô°ô×öÔÈËÙÔ²ÖÜÔ˶¯£¬»Ø·ÖвúÉúÕýÏÒʽ½»±äµçÁ÷£¬¿ÉµÃ²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵÄ×î´óֵΪEm=BLv0£¬ÓÐЧֵΪE=$\frac{\sqrt{2}}{2}$Em=$\frac{\sqrt{2}}{2}BL{v}_{0}$£¬¸ù¾Ý½¹¶ú¶¨ÂÉÓУºQ=$\frac{{E}^{2}}{R}$$•\frac{\frac{1}{2}¦Ðr}{{v}_{0}}$=$\frac{{¦Ð{B^2}{L^2}r{v_0}}}{4R}$£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºBD
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÅжϳö»Ø·ÖвúÉúµÄÊÇÕýÏÒʽ½»±äµçÁ÷£¬Ï൱ÓÚÏßȦÔڴų¡ÖÐת¶¯Ê±µ¥±ßÇиî´Å¸ÐÏߣ¬ÒªÓÃÓÐЧֵÇó½âÈÈÁ¿£¬ÓÃƽ¾ùÖµÇó½âµçÁ¿£®×¢Òâ´ÅͨÁ¿Ö»ÓëB´¹Ö±µÄÃæ»ý´óСÓйأ®
A£® | ¸ÃʵÑéºË·´Ó¦·½³Ì£º${\;}_{4}^{9}$Be+${\;}_{2}^{4}$He¡ú${\;}_{6}^{13}$C+${\;}_{0}^{1}$n | |
B£® | ¸ÃʵÑéÊDzéµÂÍþ¿Ë·¢ÏÖÖÊ×ÓµÄʵÑé | |
C£® | Á£×ÓAΪÖÐ×Ó£¬Á£×ÓBΪÖÊ×Ó | |
D£® | Á£×ÓAΪÖÊ×Ó£¬Á£×ÓBΪÖÐ×Ó |
A£® | Æû³µ×ªÍäʱҪÏÞÖÆËÙ¶È | |
B£® | תËٺܿìµÄÉ°Âְ뾶²»ÄÜ×öµÃÌ«´ó | |
C£® | ÔÚÐÞÖþÌú·ʱ£¬×ªÍ䴦תµÀµÄÄÚ¹ìÒªµÍÓÚÍâ¹ì | |
D£® | ÀëÐÄË®±Ã¹¤×÷ʱ |