题目内容
18.一列质量为15t的机车,以0.2m/s的速度驶向一节质量为10t原来静止的车箱,机车与车箱碰撞完成对接.如果对接时忽略机车以及车箱与轨道之间的摩擦力的大小,则对接后机车与车箱共同的速度的大小是0.12m/s;对接后,机车与车箱系统的机械能与对接前比将变小(填“变大”、“变小”或“不变”)分析 碰撞过程系统动量守恒,根据动量守恒可明确共同的速度;再由功能关系可分析机械能变化.
解答 解:设机车的速度方向为正方向;则由动量守恒定律可知:
mv0=(M+m)v
解得:v=$\frac{15×1{0}^{3}×0.2}{(10+15)×1{0}^{3}}$=0.12m/s;
由于碰撞后二者有共同速度,即粘在了一起,故有机械能的损失;机械能变小;
故答案为:0.12; 变小
点评 本题为动量守恒定律的基本知识的考查,注意明确动量守恒定律的方向性以及能量的转化即可.
练习册系列答案
相关题目
6.下列说法正确的是( )
A. | 全息照片的拍摄利用了光的衍射原理 | |
B. | 只有发生共振时,受迫振动的频率才等于驱动力频率 | |
C. | 高速飞离地球的飞船中的宇航员认为地球上的时钟变慢 | |
D. | 鸣笛汽车驶近路人的过程中,路人听到的声波频率与该波源的频率相比减小 |
13.如图所示,A、B和O位于同一条直线上,波源O产生的横波沿该直线向左右两侧传播,波速均为5m/s.当波源起振后经过时间6s,A点起振,又经过时间4s,B点起振,此后A、B两点的振动方向始终相反,则下列说法中正确的是( )
A. | A、B两点的起振方向相反 | |
B. | A、B两点之间的距离一定为半波长的奇数倍 | |
C. | 这列横波的波长可能为4m | |
D. | 波源振动周期可能为1.6s |
10.在电场强度大小为E的匀强电场中,将一个质量为m、电荷量为q的带电小球由静止开始释放,带电小球沿与竖直方向成θ角的方向做直线运动.关于带电小球的电势能ε和机械能W的判断,不正确的是( )
A. | 若sinθ<$\frac{qE}{mg}$,则ε一定减少,W一定增加 | |
B. | 若sinθ=$\frac{qE}{mg}$,则ε、W一定不变 | |
C. | 若sinθ=$\frac{qE}{mg}$,则ε一定增加,W一定减小 | |
D. | 若tanθ=$\frac{qE}{mg}$,则ε可能增加,W一定增加 |
7.现有一刻度盘总共有N个小格、且刻度均匀、量程未准确确定的电压表V1,已知其量程在13-16V之间,内阻r1=150kΩ.为测定其准确量程U1,实验室提供了如下表所列的器材.要求方法简捷,尽可能减少误差,并能测出多组数据.
①某同学设计了如图1所示的甲、乙、丙三种电路图,你认为选择乙电路图进行测量.
②根据选择的那个电路图,将图2有关器材连成测量电路.
③若选择测量数据中的一组来计算V1量程U1,则所用的表达式U1=$\frac{N{r}_{1}}{{N}_{1}{r}_{2}}$U2,式中各符号表示的物理量是:N:V1的总格数,N1:V1的读出格数,U2:V2的读数,r1:待测表内阻,r2:V2表内阻.
器材(代号) | 规格 |
标准电压表V2 | 量程3V,内阻r2=30kΩ |
电流表A | 量程3A,内阻r3=0.01Ω |
滑动变阻器R | 总阻值1kΩ |
稳压电源E | 20V,内阻很小 |
开关S | |
导线若干 |
②根据选择的那个电路图,将图2有关器材连成测量电路.
③若选择测量数据中的一组来计算V1量程U1,则所用的表达式U1=$\frac{N{r}_{1}}{{N}_{1}{r}_{2}}$U2,式中各符号表示的物理量是:N:V1的总格数,N1:V1的读出格数,U2:V2的读数,r1:待测表内阻,r2:V2表内阻.
8.如图,匝数为100匝的矩形线圈abcd处于磁感应强度B=$\frac{6\sqrt{2}}{25π}$T的水平匀强磁场中,线圈面积S=0.5m2,内阻不计.线圈绕垂直于磁场的轴以角速度ω=10πrad/s匀速转动.线圈通过金属滑环与理想变压器原线圈相连,变压器的副线圈接入一只“12V,12W”灯泡,灯泡正常发光,下列说法中正确的是( )
A. | 通过灯泡的交变电流的频率是50Hz | |
B. | 矩形线圈中产生的电动势的最大值为120V | |
C. | 变压器原、副线圈匝数之比为10:1 | |
D. | 若将灯泡更换为“12V,24W”且保证其正常发光,需要增大矩形线圈的转速 |