题目内容
【题目】如图所示的塔吊臂上有一可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩,在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起,A、B之间的距离以d=H-2t2(式中H为吊臂离地面的高度)规律变化,则物体做( )
A. 速度大小不变的曲线运动
B. 速度大小增加的直线运动
C. 加速度大小、方向均变化的曲线运动
D. 加速度大小、方向均不变的曲线运动
【答案】D
【解析】
物体B水平方向做匀速运动,竖直方向做匀加速直线运动,根据题意d=H-2t2,结合位移时间关系公式,可以得出加速度的大小;合运动与分运动的速度、加速度都遵循平行四边形定则,由于合速度大小和方向都变化,得出物体的运动特点和合加速度的情况.
物体B参加了两个分运动,水平方向的匀速直线运动和竖直方向的匀加速直线运动;对于竖直分运动,结合位移-时间关系公式x=v0t+at2,可得到d=H-x=H-(v0yt+at2);又根据题意d=H-2t2;对比两式可得出:竖直分运动的加速度的大小为ay=4m/s2;竖直分运动的初速度为v0y=0;故竖直分速度为vy=4t;物体的水平分速度不变;合运动的速度为竖直分速度与水平分速度的合速度,遵循平行四边形定则,故合速度的方向不断变化,物体一定做曲线运动,合速度的大小,故合速度的大小也一定不断变大,故AB错误;水平分加速度等于零,故合加速度等于竖直分运动的加速度,因而合加速度的大小和方向都不变,故C错误,D正确;故选D。
练习册系列答案
相关题目