【题目】已知椭圆:的离心率为,直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.
【题目】如图,某公园有三条观光大道、、围成直角三角形,其中直角边,斜边.
(1)若甲乙都以每分钟100的速度从点出发,甲沿运动,乙沿运动,乙比甲迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;
(2)现有甲、乙、丙三位小朋友分别在点、、,设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.
【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线的参数方程和圆的标准方程;
(2)设直线与圆交于、两点,若,求直线的倾斜角的值.
【题目】已知函数f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)当x∈[1,e] 时,求f (x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范围.
【题目】如图,在三棱锥中,平面,,,,,分别是,的中点.
(1)求三棱锥的体积;
(2)若异面直线与所成的角为,求的值.
【题目】如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.
(1)求证:平面平面;
(2)若,求二面角的余弦值.
【题目】设数集由实数构成,且满足:若(且),则.
(1)若,试证明中还有另外两个元素;
(2)集合是否为双元素集合,并说明理由;
(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.
【题目】已知是偶函数,.
(1)求的值,并判断函数在上的单调性,说明理由;
(2)设,若函数与的图像有且仅有一个交点,求实数的取值范围;
(3)定义在上的一个函数,如果存在一个常数,使得式子对一切大于1的自然数都成立,则称函数为“上的函数”(其中,).试判断函数是否为“上的函数”,若是,则求出的最小值;若不是,则说明理由.(注:).
【题目】如果,已知正方形的边长为2,平行轴,顶点,和分别在函数,和的图像上,则实数的值为________
【题目】设,是的两个非空子集,如果存在一个函数满足:① ;② 对任意,当时,恒有,那么称这两个集合为“到的保序同构”,以下集合对不是“到的保序同构”的是( )
A.B.,
C.,D.,