【题目】直线l过曲线C:yx2的焦点F,并与曲线C交于A(x1,y1),B(x2,y2)两点.
(1)求证:x1x2=﹣16;
(2)曲线C分别在点A,B处的切线(与C只有一个公共点,且C在其一侧的直线)交于点M,求点M的轨迹.
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E,F分别是BC,PC的中点,用向量方法解决以下问题:
(1)求异面直线AE与PD所成角的大小;
(2)若AB=AP,求二面角E﹣AF﹣C的余弦值的大小.
【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.虽然只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国标准如下表所示.我市环保局从市区四个监测点2018年全年每天的监测数据中随机抽取天的数据作为样本,监测值如茎叶图如图所示.
(Ⅰ)求这天数据的平均值;
(Ⅱ)从这天的数据中任取天的数据,记表示其中空气质量达到一级的天数,求的分布列和数学期望;
(Ⅲ)以天的日均值来估计一年的空气质量情况,则一年(按天计算)中大约有多少天的空气质量达到一级.
【题目】已知函数.
Ⅰ当时,取得极值,求的值并判断是极大值点还是极小值点;
Ⅱ当函数有两个极值点,,且时,总有成立,求的取值范围.
【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.
(1)求这200名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若,令,则,且.利用直方图得到的正态分布,求.
(ii)从该高校的学生中随机抽取20名,记表示这20名学生中每周阅读时间超过10小时的人数,求(结果精确到0.0001)以及的数学期望.
参考数据:,.若,则.
【题目】对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②焦点在x轴上
③抛物线上横坐标为1的点到焦点的距离等于6;
④抛物线的过焦点且垂直于对称轴的弦的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)
能使抛物线方程为y2=10x的条件是_____.
【题目】如图,在四棱锥中,,底面四边形为直角梯形,,,为线段上一点.
(1)若,则在线段上是否存在点,使得平面?若存在,请确定点的位置;若不存在,请说明理由
(2)己知,若异面直线与成角,二而角的余弦值为,求的长.
【题目】函数某相邻两支图象与坐标轴分别变于点,则方程所有解的和为( )
A. B. C. D.
【题目】如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为
A. B.
C. D.
【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线上
(Ⅰ)求的值和直线的直角坐标方程及的参数方程;
(Ⅱ)已知曲线的参数方程为,(为参数),直线与交于两点,求的值