9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:
甲厂:
乙厂:
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与不同的分厂有关”.
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)现用分层抽样方法(按优质品和非优质品分二层)从两厂中各抽取五件零件,然后从每个厂的五件产品中各抽取两件,将这四件产品中的优质品数记为X,求X的分布列.
甲厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 15 | 30 | 125 | 198 | 77 | 35 | 20 |
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 40 | 70 | 79 | 162 | 59 | 55 | 35 |
甲 厂 | 乙 厂 | 合计 | |
优质品 | |||
非优质品 | |||
合计 |
P(x2≥x) | 0.100 0.050 0.025 0.010 0.001 |
x | 2.706 3.841 5.024 6.635 10.828 |
8.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为( )
A. | h=5.6+4.8sinθ | B. | h=5.6+4.8cosθ | ||
C. | h=5.6+4.8cos(θ+$\frac{π}{2}$) | D. | h=5.6+4.8sin(θ-$\frac{π}{2}$) |
5.函数f(x)=log2|-2x+a|在区间(3,4)上单调,则a的取值范围是( )
A. | (6,8) | B. | [8,+∞) | C. | (-∞,6)∪(8,+∞) | D. | (-∞,6]∪[8,+∞) |
4.已知数列{an}的前n项和为Sn=b×2n+a(a≠0,b≠0),若数列{an}是等比数列,则a,b满足( )
0 246153 246161 246167 246171 246177 246179 246183 246189 246191 246197 246203 246207 246209 246213 246219 246221 246227 246231 246233 246237 246239 246243 246245 246247 246248 246249 246251 246252 246253 246255 246257 246261 246263 246267 246269 246273 246279 246281 246287 246291 246293 246297 246303 246309 246311 246317 246321 246323 246329 246333 246339 246347 266669
A. | a-b=0 | B. | a-b≠0 | C. | a+b=0 | D. | a+b≠0 |