ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{3}$£©=2£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1ÉϵĶ¯µã£¬ÇóµãPµ½C2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ´ËʱµãPµÄ×ø±ê£®
·ÖÎö £¨¢ñ£©°ÑÍÖÔ²µÄ²ÎÊý·½³Ì±äÐΣ¬È»ºóƽ·½×÷ºÍÇóµÃÆÕͨ·½³Ì£¬Õ¹¿ªÁ½½ÇºÍµÄÓàÏÒ£¬´úÈëx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇóµÃÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèP£¨$\sqrt{3}$cos¦Õ£¬sin¦Õ£©£¬Óɵ㵽ֱÏߵľàÀ빫ʽµÃµ½¾àÀ룬ÀûÓÃÈý½Çº¯ÊýµÄ×îÖµÇóµÃ´ð°¸£®
½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{\frac{x}{\sqrt{3}}=cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¬Á½Ê½Æ½·½×÷ºÍµÃ$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
ÓɦÑcos£¨¦È+$\frac{¦Ð}{3}$£©=2£¬µÃ$¦Ñcos¦Ècos\frac{¦Ð}{3}-¦Ñsin¦Èsin\frac{¦Ð}{3}=2$£¬
¼´$\frac{1}{2}¦Ñcos¦È-\frac{\sqrt{3}}{2}¦Ñsin¦È=2$£¬¼´$x-\sqrt{3}y-4=0$£®
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-4=0$£»
£¨¢ò£©ÉèP£¨$\sqrt{3}$cos¦Õ£¬sin¦Õ£©£¬ÓÉÌâÒâÖª£¬µãPµ½Ö±ÏßC2¾àÀëΪ
$d=\frac{|\sqrt{3}cos¦Õ-\sqrt{3}sin¦Õ-4|}{2}$=$\frac{|\sqrt{6}cos£¨\frac{¦Ð}{4}+¦Õ£©-4|}{2}¡Ý\frac{4-\sqrt{6}}{2}$£¬
µ±¦Õ=-$\frac{¦Ð}{4}$ʱ£¬dÈ¡×îСֵ$\frac{4-\sqrt{6}}{2}$£¬
´ËʱµãP£¨$\frac{\sqrt{6}}{2}$£¬$-\frac{\sqrt{2}}{2}$£©£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì»¯ÆÕͨ·½³Ì£¬¿¼²é¼«×ø±ê·½³Ì»¯Ö±½Ç×ø±ê·½³Ì£¬ÑµÁ·Á˵㵽ֱÏߵľàÀ빫ʽµÄÓ¦Ó㬿¼²éÁËÈý½Çº¯Êý×îÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣮
A£® | 6+3$\sqrt{2}$ | B£® | 5+2$\sqrt{3}$ | C£® | 8 | D£® | 6+2$\sqrt{3}$ |