题目内容
【题目】已知椭圆,以椭圆的顶点为顶点的四边形的面积为,且该四边形内切圆的半径为.
(1)求椭圆的方程;
(2)设是过椭圆中心的任意一条弦,直线是线段的垂直平分线,若是直线与椭圆的一个交点,求面积的最小值.
【答案】(1);(2).
【解析】
(1)由已知条件列出的方程组,解得后得椭圆方程;
(2)当不在坐标轴上时,设直线的方程为:,设,
代入椭圆方程求出交点坐标,得弦长,同理得点坐标得,然后计算三角形面积,利用基本不等式得最小值.再求出直线与坐标轴重合时,三角形的面积,比较后可得最小值.
(1)
∴椭圆的标准方程为
(2)当不在坐标轴上时,设直线的方程为:,设,
,
同理:,
∴
∵
(当且仅当,即进“=”成立)
∴,
当直线与坐标轴生重合时,易得,
∵
∴当且仅当时,面积的最小值为.
练习册系列答案
相关题目