题目内容

设函数f(x)=
a2
x2-1+cosx(a>0)

(1)当a=1时,证明:函数y=f(x)在(0,+∞)上是增函数;
(2)若y=f(x)在(0,+∞)上是单调增函数,求正数a的范围;
(3)在(1)的条件下,设数列{an} 满足:0<an<1,且a n+1=f(an),求证0<a n+1<an<1.
分析:(1)当a=1时,求出函数的导数,证明函数的导数在(0,+∞)上大于0恒成立,即可说明函数是增函数;
(2)y=f(x)在(0,+∞)上是单调增函数,故其导数在(0,+∞)上恒大于0,由此不等式求正数a的范围;
(3)本题中的不等式与自然数有关,此类不等式一般采用数学归纳法证明,故有数学归纳法的做题步骤证明0<a n+1<an<1.
解答:解:(1)当a=1时,函数f(x)=
1
2
x2-1+cosx
,g(x)=f′(x)=x-sinx>0在(0,+∞)上恒成立,故函数y=f(x)在(0,+∞)上是增函数;
(2)由f(x)=
a
2
x2-1+cosx(a>0)

h(x)=f′(x)=ax-sinx
若y=f(x)在(0,+∞)上是单调增函数,
则f′(x)=ax-sinx>0恒成立…(5分)
当a≥1时,对任意x∈(0,+∞),
恒有ax≥x>sinx,此时f′(x)=ax-sinx>0
所以y=f(x)在(0,+∞)上是单调增函数
当0<a<1时,h′(x)=a-cosx
令导数h′(x)=0
得cosx=a在(0,
π
2
)上存在x0使得cosx0=a
当x∈(0,x0),h′(x)=a-cosx<0,h(x)=f′(x)<f′(0)=0
这与y=f(x)在(0,+∞)上是单调增函数即f′(x)=ax-sinx>0
恒成立矛盾,所以a≥1
(3)由(1)当0<x<1,0=f(0)<f(x)<F(1)=-
1
2
+cos1<1
当0<a1<1,a2=f(a1)∈(0,1),假设0<ak<1,则ak+1=f(ak)∈(0,1),
又an-an+1=an-
1
2
an2+1-cosan
因为an-
1
2
an2+1∈(1,
3
2
),cos1<cosan<1所以
an-an+1=an-
1
2
an2+1-cosan>0,即an>an+1
所以0<a n+1<an<1
点评:本题考查利用导数研究函数的单调性,解题的关键是了解导数的符号与函数单调性的关系,且能根据这一关系证明单调性,及根据它建立不等式求参数,本题中第三小题用到了数学归纳法证明不等式,要注意数学归纳法的步骤.本题运算过程较长,运算量较大,解题时要严谨认真,避免运算出错导致解题失败.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网