题目内容
已知数列{an}的前n项和Sn和通项an满足Sn=q |
q-1 |
(1)求数列{an}的通项公式;
(2)当q=
1 |
3 |
1 |
2 |
(3)设函数f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),是否存在正整数m,使
1 |
b1 |
1 |
b2 |
1 |
bn |
m |
3 |
分析:(1)由an=Sn-Sn-1=
(an-1)-
(an-1-1),知
=q,由S1=a1=
(a1-1)得a1=q,由此知an=q•qn-1=qn.
(2)a1+a2+an=
,由此能证明出a1+a2+…+an<
.
(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
,
+
++
=2(1-
+
-
+
-
)=2(1-
),所以m≤6(1-
),由此能求出m的值.
q |
q-1 |
q |
q-1 |
an |
an-1 |
q |
q-1 |
(2)a1+a2+an=
| ||||
1-
|
1 |
2 |
(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
n(n+1) |
2 |
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
1 |
n+1 |
解答:解:(1)当n≥2时,an=Sn-Sn-1=
(an-1)-
(an-1-1)(2分)
?
=q(2分)
又由S1=a1=
(a1-1)得a1=q(3分)
∴数列an是首项a1=q、公比为q的等比数列,∴an=q•qn-1=qn(5分)
(2)a1+a2+an=
(7分)
=
[1-(
)n]<
(9分)
(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
(9分)
∴
+
++
=2(1-
+
-
+
-
)=2(1-
)(11分)
∴2(1-
)≥
,即m≤6(1-
)
∵n=1时[6(1-
)]min=3,
∴m≤3(14分)
∵m是正整数,
∴m的值为1,2,3.(16分)
q |
q-1 |
q |
q-1 |
?
an |
an-1 |
又由S1=a1=
q |
q-1 |
∴数列an是首项a1=q、公比为q的等比数列,∴an=q•qn-1=qn(5分)
(2)a1+a2+an=
| ||||
1-
|
=
1 |
2 |
1 |
3 |
1 |
2 |
(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
n(n+1) |
2 |
∴
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
∴2(1-
1 |
n+1 |
m |
3 |
1 |
n+1 |
∵n=1时[6(1-
1 |
n+1 |
∴m≤3(14分)
∵m是正整数,
∴m的值为1,2,3.(16分)
点评:本题考查数列和不等式的综合运用,解题时要注意等比数列性质的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |