题目内容
若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )
A.-2 B.2 C.-4 D.4
D
【解析】双曲线=1的右焦点坐标为(2,0),故=2,所以p=4.
若实数x,y满足不等式xy>1,x+y≥-2,则( )
A.x>0,y>0 B.x<0,y<0
C.x>0,y<0 D.x<0,y>0
命题“存在一个无理数,它的平方是有理数”的否定是( )
A.任意一个有理数,它的平方是有理数
B.任意一个无理数,它的平方不是有理数
C.存在一个有理数,它的平方是有理数
D.存在一个无理数,它的平方不是有理数
平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若点A,B,C是Γ上的不同三点,且满足++=0,证明:△ABC不可能为直角三角形.
已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,两条曲线在第一象限的交点记为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )
A.0, B., C.,+∞ D.,+∞
在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=1,c=,cos C=
(1)求sin A的值;
(2)求△ABC的面积.
设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(x)=0成立.如果实数m,n满足不等式组则m2+n2的取值范围是( )
A.(3,7) B.(9,25) C.(13,49) D.(9,49)
如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的( )
甲、乙两位射击运动员,甲击中环数X1~B(10,0.9),乙击中环数X2=2Y+1,其中Y~B(5,0.8),那么下列关于甲、乙两运动员平均击中环数的说法正确的是( )
A.甲平均击中的环数比乙平均击中的环数多
B.乙平均击中的环数比甲平均击中的环数多
C.甲、乙两人平均击中的环数相等
D.仅依据上述数据,无法判断谁击中的环数多