题目内容
(本小题满分12分)已知函数f (x) = a(
) + b.
(1)当a = 1时,求f (x)的单调递减区间;(2)当a<0时,f (x)在[0,
]上的值域是[2,3],求a,b的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343081497.gif)
(1)当a = 1时,求f (x)的单调递减区间;(2)当a<0时,f (x)在[0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343112185.gif)
(Ⅰ) 递减区间是[
](k∈Z). (Ⅱ) a = 1–
,b = 3.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343143563.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343174213.gif)
(1)当a = 1时,f (x) =
+ b = ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343221795.gif)
由2k
+
得
,
∴f (x)的递减区间是[
](k∈Z).……5分
(2)f (x) =
,∵x∈[0,
],∴
,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343440597.gif)
∵a<0,∴
∵f (x) 的值域是[2,3],∴
a + a + b = 2且b = 3
∴a = 1–
,b = 3.……10分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343081497.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343221795.gif)
由2k
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343112185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343284585.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343299626.gif)
∴f (x)的递减区间是[
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343143563.gif)
(2)f (x) =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343346604.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343112185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343424514.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343440597.gif)
∵a<0,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343455607.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343174213.gif)
∴a = 1–
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115343174213.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目