题目内容
如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF 平面ACE.
(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.
(1)略; (2) ;(3)N为线段CE上靠近C点的一个三等分点.
【解析】
试题分析:(1)由且可得,所以有
,同理可得,,所以.
(2)四棱锥的体积,四棱锥的高即点E到AB的距离,所以,四棱锥E-ABCD的体积为.
(3)在三角形ABC过M点作交于点,在三角形BEC中过G点作交EC与N点,连MN,则由比例关系易得, 同理, 又 N为线段CE上靠近C点的一个三等分点.
试题解析:(1) 且
又
.
(2)因为 四棱锥的高即点E到AB的距离,
在直角三角形中ABE中,,所以,.四棱锥E-ABCD的体积为.
(3)在三角形ABC过M点作交于点,在三角形BEC中过G点作交EC与N点,连MN,则由比例关系易得, 同理, 又 N为线段CE上靠近C点的一个三等分点.
考点:空间立体几何的证明与运算.
练习册系列答案
相关题目