题目内容
10.${∫}_{-\frac{π}{2}}^{0}$$\sqrt{1+sin2x}$dx=$2\sqrt{2}-2$.分析 把被积函数根式内部变形,开方后分段去绝对值,然后求出被积函数的原函数,再分别代入积分上限和积分下限后作差得答案.
解答 解:${∫}_{-\frac{π}{2}}^{0}$$\sqrt{1+sin2x}$dx
=${∫}_{-\frac{π}{2}}^{0}\sqrt{(sinx+cosx)^{2}}dx$
=${∫}_{-\frac{π}{2}}^{0}|sinx+cosx|dx$
=${∫}_{-\frac{π}{2}}^{-\frac{π}{4}}(-sinx-cosx)dx$${+∫}_{-\frac{π}{4}}^{0}(sinx+cosx)dx$
=$(cosx-sinx){|}_{-\frac{π}{2}}^{-\frac{π}{4}}$$-(cosx-sinx){|}_{-\frac{π}{4}}^{0}$
=$[cos(-\frac{π}{4})-sin(-\frac{π}{4})]-[cos(-\frac{π}{2})-sin(-\frac{π}{2})]$$-[cos0-sin0]+[cos(-\frac{π}{4})-sin(-\frac{π}{4})]$
=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-1-1+\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}$
=$2\sqrt{2}-2$.
故答案为:$2\sqrt{2}-2$.
点评 本题考查了定积分,考查了三角函数值的求法,考查了计算能力,是中档题.
练习册系列答案
相关题目
20.已知点P(sinα-cosα,tanα)在第二象限,则α的一个变化区间是( )
A. | (-$\frac{π}{2}$,$\frac{π}{2}$) | B. | $({-\frac{π}{4},\frac{π}{4}})$ | C. | $({-\frac{3π}{4},-\frac{π}{2}})$ | D. | ($\frac{π}{2}$,π) |