ÌâÄ¿ÄÚÈÝ
6£®ÍÖÔ²µÄÒ»¸ö¶¥µãΪM£¨0£¬$\sqrt{3}$£©£¬½¹µãÔÚxÖáÉÏ£¬ÈôÓÒ½¹µãµ½Ö±Ïßx-y+1=0µÄ¾àÀëΪ$\sqrt{2}$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉènÊǹýÔµãµÄÖ±Ïߣ¬Ö±ÏßlÓën´¹Ö±ÏཻÓÚµãPÇÒÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬|$\overrightarrow{OP}$|=1£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±Ïßlʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Éè³öÍÖÔ²·½³Ì£¬¿ÉµÃb=3£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬¼ÆËã¿ÉµÃc=1£¬ÔÙÓÉa£¬b£¬cµÄ¹Øϵ¿ÉµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®¼ÙÉèʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢µÄÖ±Ïßl´æÔÚ£®¢Ùµ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|$\overrightarrow{OP}$|=1£®µÃm2=k2+1£®½â·½³Ì¼´¿ÉµÃµ½²»´æÔÚ£¬¢Úµ±l´¹Ö±ÓÚxÖáʱ£¬ÔònΪxÖᣬPµã×ø±êΪ£¨1£¬0£©£¬A£¨1£¬$\frac{3}{2}$£©£¬B£¨1£¬-$\frac{3}{2}$£©£®·ûºÏÌâÒâµÄÖ±Ïßl²»´æÔÚ£®
½â´ð ½â£º£¨1£©ÉèÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
Ôòb=$\sqrt{3}$£¬ÉèÓÒ½¹µãF£¨c£¬0£©£¬
Ôòd=$\frac{|c+1|}{\sqrt{2}}$=$\sqrt{2}$£¬½âµÃc=1£¬
Ôòa=$\sqrt{{b}^{2}+{c}^{2}}$=2£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®
¼ÙÉèʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢µÄÖ±Ïßl´æÔÚ£®
¢Ùµ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬
ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|$\overrightarrow{OP}$|=1£®
µÃ$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1£¬¼´m2=k2+1£®¢Ù
¡à$\overrightarrow{AP}$•$\overrightarrow{PB}$=1£¬|$\overrightarrow{OP}$|=1£®
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=£¨$\overrightarrow{OP}$+$\overrightarrow{PA}$£©•£¨$\overrightarrow{OP}$+$\overrightarrow{PB}$£©
=${\overrightarrow{OP}}^{2}$+$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{OP}$•$\overrightarrow{PA}$+$\overrightarrow{OP}$•$\overrightarrow{PB}$=1-1+0=0£¬
¼´ÓÐ$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¬
¼´x1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
µÃ£¨3+4k2£©x2+8kmx+4m2-12=0£®
¡ßlÓëCÓÐÁ½¸ö½»µã£¬
k¡Ù0£¬x1+x2=$\frac{-8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£®¢Ú
¡àx1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©
=£¨1+k2£©x1x2+km £¨x1+x2£©+m2=0£®¢Û
½«¢Ú´úÈë¢ÛµÃ£¨1+k2£©•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+km•$\frac{-8km}{3+4{k}^{2}}$+m2=0£®
»¯¼ò£¬µÃ7m2=12£¨1+k2£©£®¢Ü
¡ß|$\overrightarrow{OP}$|=1£¬
¡àm¡Ù0
ÓÉ¢Ù¡¢¢ÜµÃ£¬m=0²»³ÉÁ¢£®
¢Úµ±l´¹Ö±ÓÚxÖáʱ£¬
ÔònΪxÖᣬPµã×ø±êΪ£¨1£¬0£©£¬A£¨1£¬$\frac{3}{2}$£©£¬B£¨1£¬-$\frac{3}{2}$£©£®
¡à$\overrightarrow{AP}$=£¨0£¬-$\frac{3}{2}$£©£¬$\overrightarrow{PB}$=£¨0£¬-$\frac{3}{2}$£©£¬
¡à$\overrightarrow{AP}$•$\overrightarrow{PB}$=$\frac{9}{4}$¡Ù1£¬²»ºÏÌâÒ⣮
×ÛÉÏ£¬²»´æÔÚÉÏÊöÖ±Ïßlʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ½¹µãºÍ¶¥µã£¬ÒÔ¼°ÍÖÔ²·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ºÍƽÃæÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{8}$ | C£® | $\frac{¦Ð}{16}$ | D£® | $\frac{¦Ð}{32}$ |
A£® | ±ØÒª²»³ä·ÖÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
A£® | p£¾n£¾m | B£® | p£¾m£¾n | C£® | n£¾m£¾p | D£® | m£¾p£¾n |
A£® | -$\frac{5}{9}$ | B£® | $\frac{5}{9}$ | C£® | -$\frac{7}{9}$ | D£® | $\frac{7}{9}$ |