题目内容
17.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.(1)分别求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).
分析 (1)分别代入计算即可,求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,
(2)猜想:f(n)+f($\frac{1}{n}$)=1,由于f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,得到f($\frac{1}{x}$)=$\frac{1}{1+{x}^{2}}$,故(x)+f($\frac{1}{x}$)=1,猜想成立,
(3)由(2)的结论,即可求出.
解答 解:(1)f(2)+f($\frac{1}{2}$)=1,f(3)+f($\frac{1}{3}$)=1,f(4)+f($\frac{1}{4}$)=1,
(2)猜想:f(n)+f($\frac{1}{n}$)=1,
证明:∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f($\frac{1}{x}$)=$\frac{(\frac{1}{x})^{2}}{1+(\frac{1}{x})^{2}}$=$\frac{1}{1+{x}^{2}}$.
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
∴f(n)+f($\frac{1}{n}$)=1,
(3)由(2)知f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$),
=f(1)+[f(2)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2015)+f($\frac{1}{2015}$)],
=$\frac{1}{2}$+1024,
=$\frac{2049}{2}$.
点评 本题考查函数值的求法,以及归纳探索规律的问题,属于中档题.
X | 8 | 9 | 10 |
P | 0.3 | 0.5 | 0.2 |
(Ⅰ)求该运动员两次都命中8环的概率;
(Ⅱ)求Y的分布及平均值(期望)EY.
A. | -$\frac{π}{2}$ | B. | $\frac{π}{2}$ | C. | 1 | D. | -1 |