题目内容

已知下列命题:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a

(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2

(5)
a
b
?存在唯一的实数λ∈R,使得
b
a

(6)
e
为单位向量,且
a
e
,则
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3

(8)
a
b
共线,
b
c
共线,则
a
c
共线;
(9)若
a
b
=
b
c
b
0
,则
a
=
c

(10)若
OA
=
a
OB
=
b
a
b
不共线,则∠AOB平分线上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
确定./
其中正确命题的序号
 
分析:利用向量的基本知识进行分析转化是解决本题的关键.根据向量的数量积的定义及运算性质,向量加法的平行四边形法则,平面向量的共线定理,对有关问题进行求解并加以判断.
解答:解:由向量的数量积的定义可知(1)正确;(2)
a
b
a
2
=
 |
a
| •
|b
| cosθ
|
a
|
2
=
|
b
|cosθ
|
a
|
(2)错误;(3)(
a
b
)
2
=(  |
a|
•|
b
|cosθ) 2
=
a
2
b
2
cos2 θ
(3)错误;(4)由向量的运算可知(4)正确;(5)
a
0
(6)由向量数量积的性质可得(6)(7)正确(8)反例
b
=
0
, 
a
c
0
(8)错误;(9)
a
b
=
b
c
?(
a
-
c
)⊥
b
  (9)错误;由向量加法的平行四边形法则及共线定理可知(10)正确
故答案为:(1)(4)(6)(7)(10)
点评:本题考查平面向量的基本运算性质,数量积的运算性质,考查向量问题的基本解法,要区分向量运算与数的运算.避免类比数的运算进行错误选择.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网